1

//;v

F. 3y7

NASA Contractor Report 189606

Advanced Transport Operating System (ATOPS)
Control Display Unit Software Description

Christopher J. Slominski
Mark A. Parks

Kelly R. Debure

William J. Heaphy

Computer Sciences Corporation
Hampton, Virginia

Prepared For

Langley Research Center
under Contract NAS1-19038
January 1992

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(HIASA-CR-1898&05) ADVANCED TRANSPORT N92-24689

JPERATING SYSTEM (ATOPS) CONTROL DISPLAY

UMIT SOFTWARE OJFSCRIPTION (Computer

sciances Corp.) 347 p CSCL 098 unclas
G3/06 00858562

6.3
6.3.

6.

.2

2.

.3

3.

.2

3

1

.2

3

ROUTE TRANSLATION AND PATH DEFINITION
CREATE BUF . \tiiiiiieneennnnannnnnnnnnnnn..
DEMODE + vt vttt eeeeee e ae et e e e

= -
PATHDE ittt ettt ettt et e e e
RTA TIMES ittt ittt ittt ettt e
R vttt tee ittt ettt e et e e
TRIM WPTS ittt ittt ettt eeeeeeee,

1 2

EXECUTE t ittt eteeiiae e,
HOLD_SET .\ 'ittittin ittt iieiinenneennnn..
REJECT \ttttneetine s eeaaeeeniiinennnnnannn.
THE FLIGHT PLANNING PAGESvvveiunnennn....
THE DEPARTURE/ARRIVAL PAGE
DA _INPUT ttvttttnieeeneeeneenennnannn.
DEPARR vttt tiie s e ieie e eieae e,
INDX_INPUT . \vttinntetnneennnn e,
ITEM_ADDR o tttttiietieneiieeeieennnnn..
ITEM COUNT \\vtvnninetnneeninee e,
MODIFY &\ \tttietitttiee e enneennnnennnennn,.
MOD_ROUTE +tvttntineeeneennnnnnnennnnnn..,
PAGE_COUNT +\iviinitneeiaeennnnnnneennnennn.,
REFRESH DA .t \niinnitnennnnnnnennnennnnn..
SET SIDLINE t.uuivnniennennnnnnnnennnennnn..

DIRECT tuevtiemttt e tae e teeie e,
INTC MGR « ettt ittt et iieee e iiaeennnn.
INTERCEPT \vivtinetinnneeiiienennnnennnn..,
THE HOLD PAGE'iiiiinnnnnnnennnnnnnnnn..
GET ETA ittt et eteeteneiineenannn..

HOLD INPUT . \ttitiitne i iieneeineneannn.
HLD MGR ...ttt iiiennnn., Ceee
D
INDX ...iiniiinnnnn.. s ettt
e -
POINTS .ttt ittt it ieeen e

.3.4 THE LEGS PAGE .« vtvvttitimne it innnnnnans 153
ADD WPT vt iteneeneetoaaenenenannnennennn, 157
N 25 5 158
BOUNDS 4ot v evtveennnenosnonasssnnnasnsensones 159
DSP_WPTS tevviernnenenoranoeannensnnannnnnnn 160
HLID END 4 vvvectevennennnnneeaneeeeennnnnnns 162
1502 T8 163
HLD POS tvttneeenenesteenenaenonnennnnnnns 164
INBOUND 4t vvveeeemniennneeonnnneeesnnnns 165
INTC END tvtinnenannanansasennnannennnns 166
KILL WPT 4tvttivmnenmnnnasuanennnnnennnennns 167
1 0] €< 168
LEG END tvtiiinnetenentanenennnnenennennnnn 170
LEG MGR sttt viineeneenananeenanenennennenn 171
NEWCTR & v vvvvnesnnnneeennneoeanneeeeennnnnas 172
NEW ENTRY . \iivitennnranenaneananennnnennenn 173
NEXT WPT &iititininenrennneneanananennennenn 174
NMBRS &t veeneeeaneerenneeeennoeesnnnnnnes 175
PAD NAME . ..iuitininennonnnnennnnnennonneennns 176
PROG NUM .t itiitiitintiiinaenneanennenneennns 177
SET PG veventnaenneansneanenenennennenns 178
3= U 179
STEPS v evveevvnneesnnaneceanneenannsseeennns 180
WPNAME . .ttiiietiennnttennneasnnnneeennennas 181
WPT ADDR & itiviniiinnieeneennnnnnneeennas 182
WPT DATA . tvnvitennennnneeenennrnsennsnnennas 183

.3.5 THE LEGS TIME PAGEtitininneinnnneennnnnas 185
DSP TIME ..uevuinnennnonnnennseanonnnneennens 189
ECHO TIME ..ttinetinnnnnnennnennennnneennnas 190
LEG TIME tititttinnnnernnnnneennneneennnnnens 191
TIME IN tiitetnnnneeennnetecaneneeennnnnnss 192

.3.6 THE ROUTE PAGE . ..titttiniiiinnnnnnnnnnnannnnnn 193
ACT EXIT tttiitiintnnnnnneennananaeennnenns 199
ATIRPORT .ttt ttinininninneeeeensnnannnnnns 200
12520 00 - G 201
CLEAN PPT o tiiittiitinnernnncnnecnnnnennns 202
COMPANY &ttt iie ittt et iaeeeanennnas 203
DATA IN ittt ittt ininenneeanseennnns 204
DEL TN ttuvevntineancanennennonsennenneenns 206
DEL RTE ettt tansonneennseennns 207
DSC CHECK .+ ivitiiiniiniennennennonnennnnnn 208
2103 [R 209
ENTRY WPT o it iieinniitennennennannennnnnnnns 210
EXIT o iivteiiiivnnnnnnnn e e 211
EXIT WPT o iiiitennnnrennnneneennnsoennnnnns 212
FIND PPT o iiiitiennneennnnnnncenannnnnennnns 213
FIND RTE 4ttt tinernnnnnennnacnnneanneeanns 214
€3 70] = 215

INIT PLANttt iiiteennennnns 217

. 3.

9

INTC WPTS ot tievnenrnennannnneraneneneenenns 218
INT TEG tovvenenenaronocennensnanenanenennns 220
0 10 75 N 222
MAKE WPT . .tvuenennrnenenenneneneanenennenss 223
MERGE . ittt ttteeeteeeeennnoenneeeenenennens 224
NEW POS «ovennvmneennnennneennneennnennnenn. 225
OPEN & it ettt eenseoeossosaassnsnseseoeneensnses 226
ORG RWY . ttitnnnienencnnneanannennenannnnn 227
PROG SCR vvvvenieienannnneanennnnnennenns 228
REMOVE & ittt it i et eaonenaosensosnsssenesneees 229
1230104 - R 230
RTE ID tvveevnnnenenensneaneneneneananennnn. 231
RTE INTC tuvevrnnnnnnnenononnenansnnnnnnnnn, 232
RTE WPT o tvtvnenennnnenanensnenenannnnanass 234
SEQUENCE it vtevrrerneeneonnonssnnnnennennss 235
SLASH ittt ittt s eeoaonooessosasconnsonsosens 2306

0 i 1 9 237
TYPE WPT .+ tvvtentennnnennenasnenaeennnnnnns 238
16)2357 X0 7 239
WAYPOINT vt ittt teeeenenenenenesnenonenennnes 241

) = 5 243
D0 420 1< T 245
THE ROUTE INDEX PAGE .+ vvvtvtnreenenenenennans 247
=3\ 251
RTENDX &t ot e tenenesnenenenenenneneneasnsnss 252
THE INITIALIZATION AND REFERENCE PAGES 253
THE INIT/REF INDEX PAGE v vvtiviennnnennennenss 255
INITREFE i ittt ittt it teeeneeeeneneneenennnenens 259
THE SYSTEM IDENTIFICATION PAGE .+ evvveennnennnn. 261
50 2} s 265
THE REFERENCE NAVIGATION DATA PAGEeveeen. 267
AIR INPUT vttt ittt teneestneneneneeenenennnns 271
AIR PAGE 4 ittt it titeeteseesnseeneneneneennenns 272
CLEBR ENTRY sttt vt tttnneeneneenenensenenenanas 273
LIST TINPUT v vittneneennennnennsennennnnsnns 274
LIST PAGE t.tviniitintenninneonnneneeenncnnnns 275
MAGVY vttt iiiienennn et ettt e e e, 276
NAME LEN . ..tiuntininnennennnennncneeanaenanenens 277
NAME PTR & tvviinttinnnnteenaneeenneeeennanesas 278
NAV INPUT & titttiitentennnennnenneanseannnsns 279
17N 280
PROCESS AIRWAY .+ ittt it tienenenennonenenenenss 281
PROCESS ARP .t .ttiinnetinnneennanennnnnseenns 282
PROCESS GRP titvtttininiinnncnneennennneens 283
PROCESS NAV L.ttt iiiiiiiinneeneennneennaens 284
PROCESS RWY . ..iiitiiitiiitinnnennennnnnnnanns 285
2800 20 23 05 ; 286
SET CENTER . .vtvininiiininennnnnnneenennns 287
SET LIST 4 vttt teteeeeenneneeneceeneeeennnnens 288

SUBNAV INPUT . .\titininnnninennnnnnonennnnennn 289

.4 THE INITIAL POSITION PAGE it iii ittt itneeeannn 291
INITPOS v v oo oo ssesenseneneneneneneoenenenensas 295
INITUP &t et eenesnsneneneneseseneeeneaenenens 296
STRIPR vt v e eveeesosenennenenosseenennenessnenas 297
.5 THE EPR LIMIT PAGE .+ttt titetetneennneneeannnnns 299
EPRLIM & ittt it oeteenenensoeneneneseneneneenns 303
.6 THE PROGRESS PAGE .ttt it tetenennnenenseennnas 305
ACTION ottt ettt e e senseneneeeeaeenneenans 311
PROGRESS 4 ittt vt reeeeeenseneenenoneennonnnanns 312
.7 THE PERFORMANCE INITIALIZATION PAGE 315
PEINTI T v it ee ettt teaeeeeeneseeeenenenenenenenan 319
PEINP et ee et o teeeeeenensenaenaneneneennenennnas 320
1210103 P 7 0 324
.8 THE STATUS PAGE sttt vttt ittt teeeenennnenonennnen 325
STATPG e e oo v v e oo eesnenseseseneoneneenoenesenas 329
STNDRD INP vt vttt teetesteeenenseenenenaeensnnns 330
.9 THE APPROACH REFERENCE PAGE .ttt vitinnnenennnnn 331
F N 320 232 335
VREFLU vt ettt oot eeeesensesoeseneeeeneeeeenns 336
.10 THE TAKEOFF REF PAGE it vttt teeinnnnennennenenns 337
120) 30 343
0 200) 20 20 § 1 = 346
PROC DEL &t ivtiiitiiitinnennetannnnneennneenns 350
MANUBL &t vt et temeesee s eeenenenenneeaeanneeans 351
INTRP ittt sttt teeeneeneneeneneneeeneennennnnns 352
2 =3 = o A 353
TOSTBP 4ottt ts et e tssesnsennnssnseneoenenenenenss 354
.11 THE GPSS PAGE .+ ittt it inteeeereneenencenennnnenes 355
() 23 = ¢ 359
SHOW GPS v iiiiiiii it iie it iineneeneennennas 360
.0 THE PHASE OF FLIGHT PAGES i v ittt iteeteteennnns 361
CLIMB it it ittt it eseoonseesoesensonesnoensesennas 369
(03210 5 <3 ' 370
DESCENT &ttt ettt tetseeesseeeeeeseeeneenennsns 371
FLT TYPE & iiuttinttinnnenneenncanneennneens 372
FLT TYPE INP ...t iintiiiiniinnennnennnens 374
FIND TOD & tvitvnntnnceneennneennennnsennnnns 377
03 1 e =] e P 378
SPEEDB ottt eee et e e 379
PROG LN e e ettt it e e e e 381
RTA LNB ittt it ittt eiiiint e nnnnns 382
RTA LNO ittt ittt ittt ettt ettt seennnneenas 383

123N 0 1 P 384

9.

THE FIX PAGE .. .vvtenenrnnnnenenneeonenennennnns. 385
FIX INFO tttiennnntenennteneaneaneneneenenn, 391
OUT_RAD e 393
FIX INP titnnennennetananaenenenenenennnennn. 394
FUNC INP FIX ttvevnnnnenennenenenenenennnnnnn. 395
DATA INP FIX tutinininnnenennnnennnennenennnnss 397
1) 5 P 2 P 399
CH FIX PG tvieeveninitinnennennrnenenenenenn. 400
0 N 401
COMP BABRAD . .tvvierinnnrnnennenneneannennennn. 402
FIND LEG AB ttvttitnnaneannnnnenraennnnenennss 403
UNITVEC & i teeeininninenen i inennenenenenenn. 404
120 405
FIX ERAD 1 tittnrnnnnnenennnnnnensnenenenenenns 406
AB TP LL tvvvvennnnnnnnnenannenenenenenenensns 407
COMP_RAD ..itvitiiniin et iiienennninnnnann. 408
FIND LEG RAD . tvntntntennnennennnonenennenenn 409
F ANG(X, Y, ANG) ..uininininiiennenenenenenen. 410
COMP ANG . .vviivrnnernneennsnnannanennnennnens 411
POS_INFO . ttiiitniieeennnnnaennnenneeenenns 412
COMP_IP DTG &tvvieneeennnennnennenencnennnss 413
FIX DISP tiittvtinrenntenenneneninoneaneannnss 414

Appendix A PATH DEFINITION COMPUTATIONS 415

LIST OF FIGURES

OCE-JOUMDWNRPOR,ROOIOOUBWNFRFOORFROO

CWYWowomdJddJddJdNdJdJdd NS Yoooaooaooaoaoaanabdwihbhek

P ONR O

=
NP O

The Control Display Unitt 11
CDU Untranslated Key Codes ...ttt nnnnn 14
CDU Translated Key COdES ... iviiinennreenneennn 15
CDU Output COdes ..vevcitiitiniiennenitnnnnennnnans 21
Error Codes & MESSAgeS ... iiiiietneeenernennnnns 32
The Departures & Arrivals Index Page 111
The Arrivals Pageceeeritetrnnneeeecennnnas 113
The Direct/Intercept Pageciiieiiineeenans 129
The Legs Hold Pagecconiciiiinieennacenns 137
The HOld PAge .. ttenieiieeennteeonnenoenneenns 139
The LEeQgS PATE « vt tveeronenacsssstonsanessnnssssse 155
The Legs Time Pagevtiieennnneneennnennns 187
The Route Page (#1) ..ttt eennnnnneneenns 195
The Route Page (#2) ...ttt nnnnann 197
The Route IndexXx PAge ...cuviiieetononeesnneenans 249
The Init/Ref INdeX PAGE .. vintvinnneeneseenens 257
The System Identification Page 263
The Navigation Data Pageeeeiiiiinennnnann 269
The Initial POSition PAge ve i crenconnnn 293
The EPR LiMit PAge .t iiiiieiiiiinnnennneeansenn 301
The Progress Page (#1)c.ciuiiiiiiienian... 307
The Progress Page (#2) ..., 309
The Performance Initialization Page 317
The SLAtuS PAgE ..ttt ittennnonsnnnnnssnsssenas 327
The Approach Pagecceeiiiiiniineennanas 333
The Takeoff Page (#1) ...ttt innnernnns 339
The Takeoff Page (#2) ittt iiiineinnenenneensan 341
The GPSS selecCt Pageottt nnrsnnssnnns 357
The Climb PAgettt ennnonennnnnnneens 363
The CruisSe PAgeiiitittiocnrtoettasstacenssans 365
The Descent Pagettt eeen oo eneeneanan 367
The FixX PAge .. eut ittt oriosessnnnaans 387
Nav Display Fix Examplecciiiiiiiinnnn. 389

Section 1.0 INTRODUCTION TO CDU SOFTWARE

The following sections of this document describe the
CDU software which runs on the Flight Management/Flight
Controls VAX computer on-board the TSRV. All the software,
with the exception of two small modules, is built into the
flight management background process SLOW. The remaining
modules, CDUFST and KEYBRD, serve as the CDU’s foreground
interface and are built into the processes FMFAST and HDL
respectively. CDU applications running in the background
means that no definitive timing exists for the repetitive
scheduling of CDU operations and the software may be inter-
rupted at any point by time critical foreground software.
Data structures shared by both background and foreground
must be synchronized through software flags.

Two important functions of the CDU software include
the management of the CDU interactive display and the
flight management functions performed in assisting the
flight crew in choosing and following a flight plan.
Operations performed with CDU software affects the air-
crafts guidance, navigation, and display software. The
actual CDU hardware is a Lear-Siegler unit having 14
display lines of 24 character width. There are also
5 programmable display lights on the face of the key-
board. Besides alphanumeric data keys, there are six line
select keys (LSK) on each side of the display area. See
figure 1.0.

gaet R IINTIONALLY BLASE PRECEDING PAGE BLANK NOT FILMED

PR e os

LINE
SELECT 1
KEYS

FUNCTION AND

-11-

=
=
=] | LIne
=
=
=

MOOE KEYS

ANNUNCIATORS

\—‘(

pact_ W@ inENTIONALLY BLAMK

o1/
E

p SELECT
KEYS
J
/ BRIGHT
RT ADJUST
ANNUNCIATORS

(figure 1.0)

PRECEDING PAGE BLANK NOT FILMED

13

Section 2.0 CDU INPUT DATA

Input to the CDU comes from two sources. Most CDU
data is received from flight crew entries on the Lear-
Siegler keyboard, however data input for the CDU software
may also come from the data-link. Information on data
link I/0 is contained in the CDU data-link description
(section 5).

Keyboard entries received by CDU software are of two
types; function and buffered data. Function entries consist
of one key code (one byte of data) while data entries have
one to 16 bytes of ASCII data followed by a termination key
code. The termination code is from either a line select key
or the sampled scratch pad code, 'FF’ hex. The key codes
sent by the Lear-Siegler unit are non-standard character
codes which must be translated into usable data for CDU
software. The module KEYBRD performs the translation upon
receiving the data in the I/0 handler process (HDL). The
alphanumeric codes are mapped into their ASCII counterparts
for ease of use in the software. Fiqures 2.0 and 2.1 show
the codes both before and after the translation process.

Once the code translation is complete the data is stored
in the global input buffer, ENTRY. The first byte of ENTRY is
set to the key code count. All function entries will have
the count byte set to one, data entries will be from two to
seventeen. Note that when the CDU applications have finished
processing the keyboard input, the count byte is cleared.

Data entry 1is initiated by any alphanumeric keystroke.

At that time the CDU will automatically clear all of line
#14 (CDU data entry line), then echo the character at the
start of line #14 (the CDU is now in data entry mode).
During data entry mode any line #14 update sent to the CDU
from the host computer will be ignored. When a function key
is selected during data entry mode the function code will be
immediately sent to the host, with no effect on the current
scratch pad entry. The CLR function will not be passed to
the host computer unless the scratch pad is inactive. When
data entry is in progress, the CLR will be used by the CDU
to either delete one or all characters from the scratch pad
depending on duration of selection. When all characters are
deleted from the scratch pad the CDU will exit data entry
mode and allow line #14 updates. When data entry is
completed by a LSK selection the scratch pad line is cleared
and data entry mode is canceled.

Data buffering by the CDU may be disabled by the host
software. When this situation arises the CDU scratch pad
will be cleared and disabled. Neither direct key entry
nor host software scratch pad programming will place the CDU
in data entry mode. Note that line #14 of the display
screen will always be available as a display line when data
buffering is disabled. All key entries, including line select
keys, will be sent immediately as single key function
entries (count = 1). This process will continue until the
host computer commands the re-enabling of data buffering.

PAOE_/SL IntenTionalLy BLA PRECEDING PAGE BLANK NGT FILMED

-14_.

Figure 2.0

LSK
LSK
LSK
LSK

LSK
LSK
LSK
LSK

LSK
LSK
LSK
LSK

L2
L1
R1
R2

L4
L3
R3
R4

N

L6
L5
R5
R6
3
6
9
+/-

NEXT PAGE

FIX

DIR INTC

INIT

NOTE

REF

(1) :

CDU UNTRANSLATED KEY CODES

CODE
O0OH
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
ODH
OEH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH

KEY CODE KEY CODE
K 20H 0 40H
P 21H T 41H
U 22H Y 42H
z 23H 43H
F 24H J 44H
A 25H E 4SH
LEGS 26H EXEC 46H
RTE 274 47H
L 28H CLR (1) 48H
Q 29H PREV PAGE 49H
A\ 2AH NI LIMIT 4AH
(BLANK) 2BH 4BH
G 2CH 4CH
B 2DH 4DH
DEP ARR 2EH 4EH
CLB 2FH 4FH
M 30H
R 31H
W 32H
DEL 33H
H 34H
C 35H
HOLD 36H
CRZ 37H
N 38H
S 39H
X 3AH
/ 3BH
I 3CH
D 3DH
PROG 3EH
DES 3FH CLR (1) C8H

CLR KEY CODE FOR KEY ENGAGED

< 1/2 SEC

48H, > 1/2 SEC C8H

Figure 2.1 CDU TRANSLATED KEY CODES

HEX VALUE KEY

00

01-0C line select 1-12
0D-0F

10 INIT REF
11 DIR INTC
12 N1l LIMIT
13 RTE

14 LEGS

15 FIX

16 CLB

17 DEP ARR
18 CRZ

19 HOLD

1A DES

1B PROG

1C PREV PAGE
1D NEXT PAGE
1E EXEC

1F

20 (blank)
21 short CLR
22 long CLR
23 DEL

24-2C

2D -

2E .

2F /

30-39 0-9

3A-3F

40

41-4F A-O

50-5A P-2
5B-5F

60-FE
FF scratch pad terminater

.17

Section 3.0 CDU OUTPUT DATA

The CDU display screen consists of 14 lines of 24
characters each. The top and bottom lines are referred to
as the title and scratch pad lines respectively. The
title line identifies the active CDU display page and the
scratch pad line is alternately used as a data entry and
warning display line. The lines in between are identified
as line #1 through #12. Typically odd numbered lines are
used as label lines where text is written in small font.

The even numbered lines except #12 are normally used as
data entry and display lines. Line #12 often has special
control tags such as "ERASE>". The six line select keys
on each side of the display correspond to label/data line
pairs. For example the top LSK is positioned between
lines #1 and #2.

The data transmission to the Lear-Siegler Control
Display Units is a variable length byte stream consisting of
character codes (OOH - 7FH) and special functions (80H -
FFH) . The visible representation for each character code is
shown in figure 4, page 26 of the Design Requirement Speci-
fication for the CDU. Only a subset of the existing symbols
is used by CDU software. Figure 3.0 outlines the symbols
and their hex codes used for the NASA CDU software. The
minimum amount of data that can be modified in one update is
one 24 character line on the display. However any number of
lines may be updated at once. The CDU software sets the
flag IOWAIT when a block of data is complete. CDU software
remains idle until the I/0 handler process transmits the
data to the CDU I/O processor (CVIU) and clears the flag.

The utility procedure FMTOUT is used to build the CDU
output buffer. This module inserts the special control
codes into the data stream for the applications software
when called with the various parameters available. The next
section describes the use of FMTOUT.

The remainder of this section describes the special
control codes placed in the output buffer. The sign bit of
all function codes is set, therefore CVIU software parsing
the transmitted data can quickly identify leading, trailing,
and embedded functions. The high order nibble of a function
byte is the function identifier and the low order nibble is
the function qualifier. Therefore there are eight distinct
CDU functions (8xH - FxH), each having 16 qualifiers.

The following pages describe each of the defined function
identifiers and the effect of the various qualifiers,

PRECEDING PAGE BLANK NOT FILMED
PAGBE_ /€ INTENTIONALLY BLANK

.18

FUNCTION "8x" (1000---- binary); CLEAR LINE

This function is used to blank a line on the CDU display.
The qualifier bits designate which line is to be cleared.
Since there are 14 display lines on the CDU screen valid
values for this function are 81H through 8EH.

The count function "Ax" is placed immediately following
the clear line function to blank a number of contiguous
lines of the display.

The entire screen can be cleared by the two bytes "81H,

AEH".

FUNCTION "9x" (1001---- binary); UPDATE LINE

This function is used to replace all 24 characters on a
CDU display line. The qualifier bits designate the line
which will be updated. The count function "Ax" can follow
the update function to replace a number of consecutive lines.
valid values for this function are 91H through 9EH.

Directly following the updated function, or the count
function if supplied, are the ASCII character bytes used to
fill the designated line(s). For example, the following 25
bytes place an ASCII zero, "0", in each character position of
line number three.

93H,30H,30H,...... 30H

FUNCTION "Ax" (1010---- binary); LINE COUNT

This function is used to make the clear and update
functions (8x and 9x) work over a range of display lines.
The count function is valid only when immediately succeed-
ing the other two functions in the data stream.

The valid set of values for this function are AlH
through AEH.

19

FUNCTION "Bx" (101l1---- binary); sample scratch pad

This function requests immediate sampling of the CDU
scratch pad. The qualifier bits are undefined for this
function. When the "Bx" function is received any current
data entry is terminated and sent to the host computer as if
a LSK was pressed by the pilot. The scratch pad is cleared
and data entry mode is disabled. The termination byte,
normally the selected LSK code, will be FFH.

When no data exists on the scratch pad just the
terminator code is sent just like an LSK press with no data
(ie count byte = 1).

FUNCTION "Cx" (1100---- binary); SET MODE

The mode function handles several miscellaneous CDU
operations. In particular there are eight mode commands
(COH - C5H, CEH, CFH) which are described below.

- C0O -
This code is the end of transmission byte which is always
the last byte of the data block.

Cl

Mode qualifier "1" causes the CDU to be initialized.
After this byte is processed the display screen is clear,
all lights are off, video is standard, data entry is
disabled and data buffering is enabled.

..C2

Sets standard video. All text written to the CDU after
receiving this function will have the standard video
characteristic. Note that this code may be imbedded within
an ASCII text string.

C3

Sets reverse video. All text written to the CDU after
receiving this function will have the reverse video
characteristic. Note that this code may be imbedded within
an ASCII text string.

...C4_
Disables CDU data buffering. Keystrokes will be sent
immediately to the host computer as function entries.

-20-

..C5.
Enables CDU data buffering. Data may be entered on the
scratch pad by manual entry or software programming.

CE

Selects pilot’s CDU. This function (or CF) must always
be the first byte of the data sent to the CDU. This byte
is always followed by the CDU "lights" byte described below.

CF

Selects co-pilot’s CDU. This function (or CE) must
always be the first byte of the data sent to the CDU. This
byte is always followed by the CDU "lights" byte described

below.

CDU lights byte:

This byte is always the second byte of a transmission from
the host computer. The low-order 5 bits represent the
desired status of the CDU lights (bit set = light on).

The bits are assigned as follows.

0 FAIL
1 DSPY
2 MSG

3 OFST
4 EXEC

1) Note that when the MSG light is on, no scratch pad entry
may be started by either keyboard entry or scratch pad
programming with function "Dx". Any entry on the scratch
pad when MSG is set on can be finished and transmitted with
a LSK.

FUNCTION "Dx" (1101---- binary); SCRATCH PAD UPDATE

Function D is used to place a text string into the scratch
pad as if it had been manually entered via the keyboard. The
qualifier bits indicate the number of characters in the update
string (offset by one; 0 means 1, F means 16). Note the
string of characters immediately follows the function byte.

valid values for this function are DOH - DFH. The three
bytes given below would clear the scratch pad of any existing
entry and place the text "10" into the scratch pad area.

Note that the CDU will be in data entry mode after receiving
a "D" function.

D1H, 31H, 30H

Figure 3.0 .

00-0F
10-19
1A-1F
20-22
23
24
25
26
27-3F
40
41-5B
5C
5D
5E
SF
60
61-7A
7B
C
7D-FF

CDU OUTPUT CODES

small font digits (0-9)

standard ASCII
degrees F
degrees
standard ASCII
degrees C
standard ASCII
box

standard ASCII

standard ASCII
standard ASCII
small font alphabet

standard ASCII

21.

23

Section 3.1 CREATING OUTPUT WITH FMTQUT CALLS

Background CDU software creates a block of data
to refresh part or all of the CDU display screen with
calls to FMTOUT. The format of the call is as follows:

INTEGER*2 PAD, LENGTH, CODE
BYTE STRING (*)

CALL FMTOUT (PAD, STRING, LENGTH [, CODE])

Each call appends data to the current output buffer being
built for transmission to the CDU. The display codes at
"STRING" are added to the current line after padding with
"PAD" blanks. Note that all 24 characters of a line do not
need to be supplied. FMTOUT will extend all short lines
with blanks anytime a short line is terminated. The
optional code parameter is an integer value with several
defined bit fields. CODE is used to designate the start of
a new line, enable reverse video, program the scratch pad,
clear the screen, send special function codes, or terminate
the buffer to cause transmission.

There are predefined symbols used to create the CODE
word. The individual symbols must be added together
to produce the final integer parameter.

To send a literal string to FMTOUT use %REF() or a
Hollerith constant.

LINEO - LINE13 starts new line

VIDEO - string written in reverse video
SCRTCH - initialize scratch pad to string
EOT - finished updating current buffer

CLS - clear CDU screen

FCTN - string consists of special functions

The following example code segment creates one complete
update for the CDU. The change consists of new top and
bottom lines on the screen. The top line will have the text
"EXAMPLE PAGE" preceded by 2 blanks and followed by 10. The
bottom line will have the text "HELLO THERE FRED" followed
by 9 blanks. Note that FRED will be written in reverse
video.

CHARACTER*12 TITLE
INTEGER*4 USER

TITLE = ’'EXAMPLE PAGE’

USER = 'FRED’

CALL FMTOUT (2, %REF(TITLE), 12, LINEO)

CALL FMTOUT (0, $%REF ('HELLO THERE’), 11, LINE13)
CALL FMTOUT (1, USER, 4, VIDEO + EOT)

PAGE_.D) INTENTIONALLY BLAMK PRECEDING PAGE BLANK NOT FILMED

25

Section 4.0 CDU EXECUTIVE

This section contains the module descriptions for CDU
executive software. The executive software performs
miscellaneous functions that are independent of the
currently displayed CDU page. There are five modules
described in this section. The remaining executive modules
are associated with the data-link portion of the CDU and are
described in section 5. The majority of the CDU exec-
utive sofware, including data-link, is found on the file
CDUEXC.FOR.

c NG PAGE BLANY NCT F".MED
PhoE_\ 7 INTENTIONALLY BLAW PRECED! 3

__26_

MODULE NAME: CDUEXC

FILE NAME: CDUEXC.FOR
PROCESS: SLOW

CALLED BY: SLOW
CALLING SEQUENCE: CALL CDUEXC
PURPOSE:

To manage those CDU functions which are independent

of the current CDU display page.

DESCRIPTION:

This module performs several miscellaneous operations

for the CDU software. Since most sections of the module
are unrelated, the operations are simply itemized below in
the order found in CDUEXC.

Cause transmission of the CDU initialize code on start
up of the software.

Inhibit all CDU software until the I/0 handler has
completed last output.

Initialize output buffer with the predifined start byte
and the CDU lights byte.

Call MESSAGE MGR upon detecting data-link inputs.

Call EXEC_FCTN to handle special CDU function entries
not destined for specific page manager sofware. .

Compute the barometric pressure altitude correction
value and issue baro-set alert when traversing the
18,000 foot threshold.

Call active page manager software.

Perform auto-update of waypoints every ten seconds
when required by ’'P0OS’ type waypoints. Calls
UPDATE POS.

Manage "North-up" map display center position.

Place appropriate error messages into CDU output
buffer when problems detected by the various page
managers. Errors will be placed in the buffer each
time a new one is generated until the CLR key has
been pressed to acknowledge the error. At that time
the error message is replaced with the original
scratch pad entry which caused the error. Warning
messages are only sent out one time. Acknowledgement
by CLR entry is not required for these. See figure
4.0 at the end of this section for error codes and
their associated message.

-27~

GLOBAL REFERENCES:

VARIABLES
ALTCOR BARSET* BARSFT* CDUCNT* CDU INIT* CDU MODE CTRF*
ERCODE* IOWAIT LT DSPY LT EXEC LT FAIL LT MSG* LT OFST
MODCNT PGINIT* PGRQST* POSTIME* TIME TIME VLD -

ARRAYS
ENTRY LOKWPT MESSAGE OLDPAGE*

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
EXEC _FCTN FMTOUT LINK CMD MESSAGE MGR SELECT UPDATE POS

28

MODULE NAME: EXEC_FCTN
FILE NAME: CDUEXC.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL EXEC_FCTN(SAVE, ER_FLAG)

PURPQSE:
To process CDU function entries not intended for the

current CDU page display module.

DESCRIPTION:

When CDUEXC receives a function entry it calls
EXEC FCTN to determine if the entry is the type handled
by the executive. If not, EXEC_FCTN returns and the entry
is used by the current page display module.

The types of function entries handled by EXEC_FCTN
are listed below along with a brief description of the
actions taken.

CDU page selection; The function keycode is used as an
index into a page ID array and placed in the page change
request variable (PGRQST). '

Clear key (long or short press); If an error message is
displayed it is replaced with the data entry which caused
the error by a call to RECALL. The message light is also
turned off. When no error message is shown this function
simply blanks the bottom CDU line.

Execute key; When the execute light is not on this
function is ignored. Otherwise if there is a provisional
flight plan it is made active by a call to EXECUTE. When
neither condition is true the execute function is assumed
to be handled by the current page display software.

If none of the above were true and an error message is
currently displayed then the entered function (LSK,
PREV/LAST page, or DEL) is ignored.

Delete key; The scratch pad line is programmed with the
word "DELETE". Typically this text will be placed at a
particular display line with a LSK to designate the
deletion of a certain CDU item.

GLOBAL REFERENCES:

VARIABLES
ERCODE LT EXEC PGRQST* PMODE

ARRAYS
CDUBUF* ENTRY*

FUNCTIONS AND SUBROUTINES
EXECUTE FMTOUT RECALL

-29-

MODULE NAME: RECALL
FILE NAME: CDUEXC.FOR
PROCESS: SLOW
CALLED BY: EXEC_FCTN, MESSAGE MGR
CALLING SEQUENCE: CALL RECALL(SAVED_ENTRY)
PURPOSE:
To recall erroneous data entry.
DESCRIPTION:
When CDU entries cause error message displays the
erroneous entry is saved in a buffer "SAVE". The entry

is programmed back into the scratch pad by RECALL. Note
that when no text exists for reprogramming (function entry
error for example) the only action is to clear the bottom
CDU display line.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
FMTOUT

30

MODULE NAME: SELECT

FILE NAME: SELECT.MAR

PROCESS: SLOW

CALLED BY: CDUEXC

CALLING SEQUENCE: CALL SELECT (PAGE_1ID)

CALLS TO: DSP DUMP, INITREF, IDENT, INITPOS,

PFINIT, TKOFF, APPREF, NAVPG, STATPG,
ROUTE, CLIMB, CRUISE, DESCENT, LEG_MGR,
RTENDX, EPRLIM, PROGRESS, INTC MGR,
DEPARR, FIX INFO, HLD_MGR, LEG TIME,
TEST, RTENDX -

PURPOSE:
Call the appropriate page manager subroutine.

DESCRIPTION:

The variable "PAGE" contains the index of the current
CDU display page. During each iteration of the CDU
executive, the module SELECT is called to perform the
corresponding call to a page manager listed in a local
address table. Note that the values for "PAGE" have
predefined symbolic names assigned in the file CODES.CDU.

GLOBAL REFERENCES: none

31

MODULE NAME: UPDATE_POS
FILE NAME: CDUEXC.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL UPDATE POS

PURPOSE:
To update the "POS" type waypoint with current aircraft
parameters.

DESCRIPTION:

A provisional flight plan may begin with a "pos" type
waypoint which does not become stationary until the flight
plan has been executed. The position, altitude, and speed
of the pilot defined waypoint are updated every 10 seconds to
the values of the aircraft. The module DEMODE is called to
incorporate the changes into the provisional flight plan.

The variable POSTIME is set to the update time by CDUEXC.
During every iteration, POSTIME is compared to the current
aircraft time to check for 10 seconds elapsed. When this
occurs the call to UPDATE POS is made. Note that a POSTIME
value of zero corresponds to no "POS" waypoint to update.

GLOBAL REFERENCES:

VARIABLES
ALTCOR GS LAT LON

RECORD ARRAYS
PPT_WPT* WPT_MOD

FUNCTIONS AND SUBROUTINES
DEMODE FIND PPT

ERROR CODES AND MESSAGES

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)

INVALID DATA ENTRY
CHECK AIRFIELD

NOT FOUND IN MEMORY
BUFFER OVERFLOW

DEAD KEY ERROR

ENTRY WPT NOT DEFINED
INVALID EXIT WPT

BAD RADIUS AT XXXXX
NO DATA

DEAD WAYPOINT ERROR
BAD DATA FORMAT

ENTRY OUT OF RANGE
INVALID DELETE :
ILLEGAL ASSIGNMENT
FIX ALREADY SPECIFIED
NO ABEAM RADIAL

EXAMPLES

LSK can be used for neither data nor function entries

1LSK cannot be used for data entries (function OK)

LSK cannot be used for function entries (data OK)

NEXT or PREV cannot be used

Programmed DELETE unacceptable

Allowed data entry is unacceptable because ...
unrecognizable data
recognized data can’t be used because
data base search failure
below or above acceptable value range
specific value improper in context

codes 2,

4,

6,

7, 8, 10, 15 & 16 are for specific cases

-figure 4.1-

13

11

12
14

33

Section 5.0 CDU DATA-LINK

One method of input to CDU software is through the
TSRV data-link. This method is used to receive clearance
information sent by ground controllers. The CDU also is
used for data-link outputs when composing messages and
sending clearance requests to the ground station.

Two blocks of memory are allocated for data-link
I/0 in the global section IPLCOM. The data at these
locations is transmitted between the FM/FC VAX and the
data-link computer every 50 milliseconds. The input area
consists of 102 bytes of memory. The first 2 bytes are
labeled CDU CMD and are used as a bit control word for
commands from the data-link computer. The remaining 100
bytes (LINK IN) may contain a text string uplinked from the
ground station. The memory allocated for output is a 202
byte block. The first 2 are bytes used as a control word
to be sent to the data-link computer to describe the text
data stored in the remaining 200 bytes. The first word is
labeled MSG_CNT and the text block is CDU_MSG. MSG_CNT
uses the low byte as a character count of the data in
CDU_MSG. MSG CNT is not updated until the CDU background
software has completed the entire text buffer. The high
byte of MSG CNT is used to control the use of the text
buffer by the data-link computer. When composing a text
message or sending the current provisional flight plan
to the data-link computer this byte is zero. When the
processxng of a new clearance sent by the data-link computer
is complete it will be set to FFH, unless an error in the
uplinked clearance was detected. With a clearance error
the byte will contain the character count of an error
message appended to the text buffer. The total length of
the text buffer is then the sum of the low and high bytes
of MSG CNT.

The CDU executive calls the module LINK CMD each
iteration of the background process to check for any data
link commands in CDU CMD. The variable CDU MODE is set
by LINK CMD to signal MESSAGE MGR (called by CDUEXC) to
initiate message handling by the various CDU data-link
modules. The remainder of this section contains module
descriptions for all the CDU data-link procedures.

.34

MODULE NAME: ADD PLAN

FILE NAME: LINK.FOR

PROCESS:: SLOW

CALLED BY: LINK_RT

CALLING SEQUENCE: CALL ADD PLAN (WPT_NAME)
PURPOSE:

To prepare the provisional flight plan for the
insertion of the new data-link clearance waypoints.

DESCRIPTION:

This procedure is called with the name of the first
waypoint of the new clearance. The current flight plan
is searched for a match of the input waypoint. If it
is not there the old flight plan is removed and the
input waypoint is made the first of the new plan. When
the waypoint does exist in the current flight plan all
waypoints after it are removed. Note that the waypoint
may be part of a route function, in which case the
procedure must make the input waypoint the new exit
waypoint of the route function.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ACTION*

ARRAYS
ENTRY* RTE_CNT*

RECORD ARRAYS
RTE_MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
BOUNDS FILL RTE RTE_WPT WPT_ADDR

35

MODULE NAME: BEG_RTE

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: LINK PD

CALLING SEQUENCE: CALL BEG_RTE (RTE_ BUFFER INDEX)
PURPOSE:

To prepare the provisional route buffer for proceed
direct assignment.

DESCRIPTION:

BEG_RTE modifies the provisional route buffer so that
the entry indicated by the input parameter RTE BUFFER INDEX
becomes the second element of the route buffer. To do this
it may eliminate elements, open a new slot at the start, or
simply leave the buffer alone (already #2) depending on the
value of RTE BUFFER INDEX.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
KILL OFEN

-36-

MODULE NAME: BYTE IN

FILE NAME: CDUEXC.FOR
PROCESS: SLOW

CALLED BY: MESSAGE_MGR
CALLING SEQUENCE: CALL BYTE 1IN
PURPOSE:

To handle CDU keyboard entries during data-link message
composition mode.

DESCRIPTION:

When BYTE IN is called one CDU key code resides in the
CDU input buffer, ENTRY. The action taken depends on the
type of key entered. If it was a page change or execute
key it is simply passed on to the current page software
called later by the executive. 1If a line select or delete
key was pressed the entry buffer is cleared and the key is
ignored. All other keys affect the CDU message being com-
posed. A short clear removes the last character from the
text while a long clear clears the entire message. Any
other key received is an alphanumeric which is appended
to the message buffer.

GLOBAL REFERENCES:

VARIABLES
FUNC MSG_CNT

ARRAYS
CDU_MSG* ENTRY*

MODULE NAME: DELIMIT
FILE NAME: LINK.FOR
PROCESS: SLOW
CALLED BY: LINK EA, LINK PD, LINK RT
CALLING SEQUENCE: CALL DELIMIT(TEXT, CNT, DONE)
PURPOSE:

To parse the data-link clearance message.
DESCRIPTION:

This procedure parses the input string TEXT searching
for either a "." or ":" character which are the only

valid terminaters. The string length is returned in CNT
and the boolean flag DONE is returned when at the end of
the clearance message (":" encountered).

GLOBAL REFERENCES: none

37

.38

MODULE NAME: EXPAND RTE

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: DEMODE, LINK CMD, REJECT
CALLING SEQUENCE: CALL EXPAND RTE

PURPOSE:

To create an expanded data-link text buffer for the
data-link display.

DESCRIPTION:

When the flight crew desires to request a clearance,
the current provisional flight plan is formatted into
the data-link display buffer for transmission to the
data-link computer. This is performed when the initial
request is received and each time the provisional flight
plan is changed during clearance request mode. This
procedure steps through the provisional flight plan
storing data into the display buffer with calls to
TEXT OUT. The destination airfield and cruise altitude
are also formatted into the buffer.

GLOBAL REFERENCES:

VARIABLES
CRZALT MSG_CNT

ARRAYS
AIRPTS CDU_MSG* RTE_CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
FILL _OUT FSTRNG GET LONG TEXT_OUT TYPE_WPT

39

MODULE NAME: FILL OUT

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: MESSAGE MGR, LINK EA, LINK RT,

TEXT _OUT, EXPAND RTE
CALLING SEQUENCE: CALL FILL OUT(COUNT, BUFFER)

PURPOSE:
To fill data into the data-link message buffer.

DESCRIPTION:

The data specified by the input parameters is appended
to the data-link display buffer that is built when flight
plan clearance information is received. A display buffer
pointer is maintained to account for the append position.

GLOBAL REFERENCES:

VARIABLES
MSG_CNT*

ARRAYS
CDU_MSG

FUNCTIONS AND SUBROUTINES
LIB$SMOVC3

40

MODULE NAME: FILL _RTE

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: LINK PD, ADD PLAN

CALLING SEQUENCE: CALL FILL RTE (INDEX, ADDRESS)
PURPOSE:

To make a data-link waypoint entry in the route buffer.

DESCRIPTION:

FILL RTE is called to fill in waypoint information in
the provisional route buffer at the position indicated
by the input parameter INDEX. If the address of the
waypoint is supplied as a non-zero value, the waypoint
is simply entered into the buffer position. Its type
is determined by the function WPT_TYPE. When the address
parameter is zero, FILL_RTE creates a "POS" pilot defined
waypoint at the current aircraft position and inserts the
created waypoint data into the route buffer. The function
MAKE WPT is used to create the waypoint.

GLOBAL REFERENCES:

VARIABLES
ALTCOR GS LAT LON

RECORD ARRAYS
RTE_MOD*

FUNCTIONS AND SUBROUTINES
MAKE WPT TYPE WPT

41

MODULE NAME: LINK CMD

FILE NAME: LINK.FOR
PROCESS: SLOW

CALLED BY: CDUEXC
CALLING SEQUENCE: CALL LINK CMD
PURPOSE:

To serve as the data-link software executive.

DESCRIPTION:

LINK CMD is called by the CDU executive (CDUEXC) every
pass through the background software. It monitors the
data-link control word received from the data-link computer
to initiate the appropriate actions for the specific data
link commands.

The bits of the data-link control word (CDU CMD) are

assigned as follows.

CDU message composition mode

Clearance information received

Insert clearance as provisional flight plan

Erase previously received clearance

Clear current message composition buffer

Send current provisional flight plan to data-link

N Wk o

LINK_CMD looks for a change in state of the CDU_CMD bits,
performing certain operations when a bit changes from
off to on and others for changes from on to off.

The Insert command from the data-link computer requires
special checking in LINK CMD. 1If a provisional flight plan
already exists when the Insert clearance is commanded the
uplinked flight plan is not placed into the guidance buffer.
Instead an error message is appended to to expanded flight
plan text in CDU_MSG. The software then waits for another
Insert command. When the second Insert is issued and the
provisional guidance buffer is finished LINK CMD restarts
the parsing of the uplink clearance. This occurs since the
changes to the flight plan which were being made may alter
how the clearance affects the current flight plan. When the
clearance processing is complete the insertion occurs
immediately without response from the data-link computer.

Note that clearance commands may occur during CDU data
link output sequences; data composition or clearance
requests. LINK CMD will save the current output data to
make room for the overriding clearance data. When the new
clearance sequence is finished the CDU will be restored to
the previous state of data-link output.

42

GLOBAL REFERENCES:

VARIABLES
ACTION CDU_CMD CDU_MODE* CRZALT* LNK CNT LNK CRZ MSG CNT*
NEW CMD PMODE POSTIME* SQUAT TIME - -

ARRAYS
AIRPTS CDU_MSG LNK _ARPT LNK_RTE MSG_BYT* RTE CNT* WX DEF

RECORD ARRAYS
RTE_ACT RTE_MOD

FUNCTIONS AND SUBROUTINES
DEMODE EXPAND RTE LIBSMOVC3

43

MODULE NAME: LINK EA

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: MESSAGE MGR

CALLING SEQUENCE: CALL LINK EA(MESSAGE, INDEX, ERR_TEXT)
PURPOSE:

To handle expected altitude clearances from the data-link.

DESCRIPTION:

The input to LINK EA is the parameter MESSAGE. It
contains all the uplinked clearance following the "EA"
field found by MESSAGE MGR. The remaining parameters are
outputs. INDEX is the pointer into the data-link input
buffer LINK_IN. It is updated to point to any clearance
following the EA data. ERR _TEXT is filled with text
information when an error is detected while parsing the
EA data.

The only data used in the EA clearance is an altitude
assignment. The entry is decoded by the function ALTX.
The message for the data-link display is created and
stored in CDU_MSG and the altitude value is saved in the
global variable LNK CRZ.

GLOBAL REFERENCES:

VARIABLES
ACTION* ERCODE LNK CRZ*

FUNCTIONS AND SUBROUTINES
ALTX DELIMIT FILL OUT ISTRNG LIBS$MOVC3

-4

4_
MODULE NAME: LINK_PD
FILE NAME: LINK.FOR
PROCESS: SLOW
CALLED BY: MESSAGE_MGR
CALLING SEQUENCE: CALL LINK_PD(MESSAGE, INDEX, ERR_TEXT)
PURPOSE:
To handle Proceed Direct clearances from the data-link.
DESCRIPTION:

The input to LINK PD is the parameter MESSAGE. It
contains all the uplinked clearance following the "PD"
field found by MESSAGE MGR. The remaining parameters are
outputs. INDEX is the pointer into the data-link input
buffer LINK IN. It is updated to point to any clearance
following the PD data. ERR TEXT is filled with text
information when an error is detected while parsing the
PD data.

When LINK PD is called it finds the waypoint name
supplied in MESSAGE in the navigation data base, AADCOM.
Once identified, a search of the provisional route buffer is
made to determine if the waypoint exists on the provisional
flight plan. If it does, all the waypoints preceding the
selected waypoint are replaced by an auto-update "POS"
waypoint, the remainder of the flight plan is not altered.
When the selected waypoint is not part of the provisional
flight plan a provisional flight plan consisting of an
auto-update "POS" waypoint and the selected waypoint become
the only two provisional flight plan waypoints.

Note that the actual route buffer manipulations are
performed through calls to BEG_RTE and FILL RTE.

GLOBAL REFERENCES:

VARIABLES
ACTION* ERCODE MSG CNT

ARRAYS
CDU_MSG* ENTRY* RTE_CNT*

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
BEG_RTE BOUNDS DELIMIT FILL_RTE GET_LONG KILL LIB$MOVC3
TEXT OUT WPT_ADDR

45

MODULE NAME: LINK_RT
FILE NAME: LINK.FOR
PROCESS: SLOW

CALLED BY: MESSAGE MGR

CALLING SEQUENCE: CALL LIﬁK_RT(MESSAGE, INDEX, ERR_TEXT)

PURPOSE:
To handle route clearance messages from the data-link.

DESCRIPTION:

The input to LINK RT is the parameter MESSAGE. It
contains all the uplinked clearance following the "RT"
field found by MESSAGE MGR. The remaining parameters are
outputs. INDEX is the pointer into the data-link input
buffer LINK IN. It is updated to point to any clearance
following the RT data. ERR TEXT is filled with text
information when an error is detected while parsing the
RT data.

A RT clearance consists of one or more waypoints for
the aircraft flight plan. Origin and destination air-
fields may be supplied also. The waypoint data can
appear in several forms. Including individual waypoints,
airway segments, standard instrumentation departures (SID),
standard terminal arrivals (STAR), approaches, and implicit
runway waypoints. The different types of multiple waypoint
constructs are collectively referred to as route functions.

LINK RT starts by using the procedure DELIMIT to
parse the input message. Each item in the clearance
is separated and saved for later processing in a
waypoint/route function list. 1If the first entry in the
list is an origin airfield a total reclearance is made.
Note that a previously entered flight plan can only be
erased when the aircraft is on the ground. When the last
entry is an airfield it is used as the destination airport.
When no destination has been entered, manually or by data-
link, the destination is assumed to be the same as the
origin.

There are three situations that are identified to
prepare the provisional route for the new clearance.

If the origin airfield was supplied, a completely new
clearance is made. This means all previous waypoints are
eliminated and the "new plan" flag is set which effects
the processing in the module "RT NEW". When the clearance
is a SID, STAR or APPROACH no flight plan preparartion is
needed since these always replace existing pieces or come
at the very beginning or end of the flight plan. Other
clearances are modifications to the existing flight plan
which requires a call to ADD PLAN to prepare the provisional
guidance buffers. Once the preparation phase is complete
LINK RT steps through each item of the list with a call to
RT NEW to enter the flight plan.

46

GLOBAL REFERENCES:

VARIABLES
ACTION* ERCODE MSG _CNT SQUAT

ARRAYS
AIRPTS CDU MSG* RTE_CNT*

FUNCTIONS AND SUBROUTINES
ADD PLAN DELIMIT FILL OUT LIBSMOVC3 LUARP RT NEW TEXT_OUT

-47-

MODULE NAME: MESSAGE MGR

FILE NAME: CDUEXC.FOR

PROCESS: SLOW

CALLED BY: CDUEXC

CALLING SEQUENCE: CALL MESSAGE_MGR (ENTRY_RESTORE BUFFER)
PURPOSE:

To manage the creation of data for the CDU MSG data-link
output buffer.

DESCRIPTION:

MESSAGE MGR uses the global index CDU MODE to determine
the action required. It is not called when CDU MODE is set
to zero.

When CDU MODE is set to -1 a new clearance has been
received. The cryptic text uplinked from ground control
must be expanded into more meaningful text for display to
the flight crew on the data-link display. The expanded
text is stored in the data-link output buffer CDU MSG. A
new provisional flight plan is also created from the up-
linked clearance. The original clearance data is saved
while the called modules create the new one. After
processing is complete the original is restored and the
new data is saved to be available when the flight crew
chooses to "INSERT" the data-link clearance into the
flight plan. There are four different types of clearance
messages, and one or more will be found in a new data-link
clearance. They are denoted by the following 2 letter
code in the input text.

RT Route clearance

PD Proceed direct to a position
EX Expected arrival clearance
EA Expected altitude

The module LINK RT is called for both the RT and EX types.
The PD and EA types are processed by calls to LINK PD and
LINK EA respectlvely

When CDU MODE is set to 1 a sequence of events is started
for the data-link text message composition on the CDU
scratch pad line. On each iteration of the CDU executive
one of the follwing steps is taken.

CDU MODE = 1: The CDU scratch pad sample request is sent
to the CDU. CDU MODE is set to 2.

CDU MODE = 2: 1If the sample scratch pad has arrived the
sampled data is saved, the CDU is commanded into no
data buffering mode, and CDU MODE is set to 3.

48.

CDU MODE = 3: The CDU remains in this mode until the
comp031tlon text is complete. Each key entry on the
CDU is appended to the current text buffer and the
last 20 chracters of the text are output to the
CDU scratch pad.

CDU _MODE = 4: This mode is set by the module LINK CMD
when message composition termination is detected.
MESSAGE_MGR commands the CDU back into scratch pad
buffering of text and reprograms the scratch pad
with any data that existed there before composition
mode was started.

GLOBAL REFERENCES:

VARIABLES
CDU_MODE* ERCODE LNK_CNT* LNK_CRZ* MSG_CNT* SAVE_CNT TIME

ARRAYS
AIRPTS* CDU MSG ENTRY LINK_IN LNK_ARPT* LNK_RTE MESSAGE

MSG BYT* RTE CNT* SAVE | MOD

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
BYTE IN FILL OUT FMTOUT GET_WORD LIBSMOVC3 LINK _EA LINK_PD
LINK _ “RT RECALL SHOW__ MESSAGE

..49..

MODULE NAME: RT NEW

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: LINK RT

CALLING SEQUENCE: CALL RT NEW(NAME, LENGTH, NEW PLAN)
PURPOSE:

To enter clearance data into the flight plan.

DESCRIPTION:

RT NEW is called with three input parameters from the
procedure LINK RT. The first is the name of a route item
such as a waypoint or airway. The length of the name is
the second parameter and the third is a flag indicating
whether or not the current clearance was a new flight plan.

This module identifies the type of clearance entry and
calls the appropriate subroutine to store the information
in the flight plan being created for the received data-link
clearance. The only clearance allowed when NEW PLAN is
false is a departure/arrival type entry. These are handled
with a call to MODIFY. The NEW PLAN type entries include
departure/arrivals, waypoints, and airways. The waypoint
entries are placed in the flight plan with a call to
WAYPOINT while other types use a call to GROUP.

GLOBAL REFERENCES:

VARIABLES
ERCODE* LINE* MSG _CNT

ARRAYS
CDU_MSG* RTE_ CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
GET_LONG GROUP MODIFY RTE 1D TEXT _OUT TYPE WPT WAYPOINT WPT ID

50

MODULE NAME: SHOW MESSAGE
FILE NAME: CDUEXC.FOR
PROCESS: SLOW

CALLED BY: MESSAGE MGR

CALLING SEQUENCE: CALL SHOW_MESSAGE

PURPOSE:
To display the composed data-link message on the CDU.

DESCRIPTION:

SHOW MESSAGE is called when the data-link computer has
placed the CDU in message composition mode. 1In this mode
the pilot creates a message intended for the ground
controllers. This module writes the text "MSG>" to the
CDU scratch pad and appends the last 20 characters of the
message.

GLOBAL REFERENCES:

VARIABLES
MSG_CNT

ARRAYS
CDU_MSG

FUNCTIONS AND SUBROUTINES
FMTOUT

_51...

MODULE NAME: TEXT_ OUT

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: LINK PD, LINK RT, RT NEW, EXPAND RTE

CALLING SEQUENCE: CALL TEXT OUT (ADDRESS, TYPE)

PURPOSE:
To store expanded message text for data-link display.

DESCRIPTION:

TEXT_OUT is called with an address of a route buffer item
and its type. The item may be a waypoint or a route func-
tion. The following list describes the text stored in the
data-link display buffer for the various types of route
elements.

GRP or PPT waypoint - the waypoint name
other waypoints - AADCOM text associated with WPT

Airways - the word VICTOR or JET followed by the
airway number

SID/STAR/APPROACH - AADCOM text associated with the
route function followed by the
text APPROACH, DEPARTURE, or
ARRIVAL

GLOBAL REFERENCES:

VARIABLES
MSG_CNT

ARRAYS
CDU_MSG*

FUNCTIONS AND SUBROUTINES
FILL_OUT GET BYTE GET LONG

53

Section 6.0 CDU FLIGHT PLAN OPERATIONS

The most common use of the CDU is the creation and
modification of the aircraft flight plan. Over 100
procedures are dedicated to transforming the pilots
flight plan entries to a database used for aircraft
guidance and cockpit displays. The flight crew may
examine details of the flight plan on both the CDU and
the navigation display. The flight plan database is
used by automatic guidance to produce aircraft control
signals and by the primary flight display to drive
guidance cues used in manual flight operations.

The basic element of the flight plan is the waypoint.
A waypoint is a global position defined by its latitude
and longitude. Waypoint positions may be defined for
some real geographic location such as a VOR transmitter
or may be a convenient location such as the start of the
final approach leg to a runway. The following are the
different types of waypoints used in the ATOPS CDU
system.

GRP - Ground reference point.

NAVAID - Navigational aid transmitter; VOR, DME, TACAN.

AIRFIELDS - Airfield tower position.

PILOT WAYPOINT - Dynamically generated waypoint. Can
be created as a bearing and distance from a fixed
reference (including the airplane) or an absolute
latitude/longitude value.

Predefined groups of waypoints are referred to as route
functions. The waypoints in a route function are defined
in a sequence which is used to form a connected path
segment. Not all waypoints defined for a route function
must be included into the flight plan. Particular entry
and exit waypoints may be chosen to bound the set of
waypoints actually used in the plan. The different types
of route functions used in the CDU are as follows.

SID - Standard Instrument Departure for airports.

AIRWAY - Both Victor and Jet airways which are bi-
directional routes defined for major air traffic.

STAR - Standard Terminal Arrival Routes to airports.

APPROACH - Approach path to a particular airfield’s
runway.

HOLD - Holding pattern consisting of four pilot
waypoints.

RABE DO\ INTENTIONALLY BLANE PRECEDING PAGE BLANK NOT Fi-MED

54

The flight plan is made up of waypoints, route functions,
and route dicontinuities which are collectively referred to
as route elements. Route discontinuities are gaps in the
flight plan which seperate path segments. They require a
position in the route and waypoint buffers as do the
previously mentioned elements, however the various data
fields in the buffer are zeroed.

The desired route elements are manually entered into the
flight plan by use of the various clearance pages of the
CDU, shown below.

.55

ROUTE - Enter origin/destination airfields and route
elements into the flight plan.

LEGS - Enter individual waypoints and their constraints
into the flight plan.

DIRECT/INTERCEPT - Designate a destination waypoint to
be reached by a "Direct To" segment or a fixed bearing
intercept.

LEG TIME - Specify an arrival time at a particular
waypoint.

ROUTE INDEX - Request airway intercept.

HOLD - Define holding pattern.

DEPARTURE/ARRIVAL -~ select airfield departure and
arrival routes.

Any particular waypoint on the path may have up to four
constraints applied to it. These are altitude, speed,
arrival time, and turn radius. The waypoint positions and
their constraints are the parameters which are used in the
creation of the waypoint guidance buffer used by flight
management and display procedures.

57..

Section 6.1 THE FLIGHT PLAN DATABASE

There are eight data buffers used to save flight plan
information. The following sections describe the form
and usage of the data stored. Each buffer is part of
the set of commons defined as system global sections.

P CR— GE : T OFILM
A€ 50 mition ALY S PRECEDING PAGE BLANK NGT FI_MED

59

Section 6.1.1 THE NAVIGATION DATABASE (AADCOM)

AADCOM is a read-only global common containing all
pre-defined aircraft navigation data. A pointer block
is placed at the begining of the common to direct search
routines to the various data areas within the common.
The format of the pointer block is as follows.

OFFSET LABEL POINTER TO

0 IBPTR longitudinal strip data
4 BULK ID database ID text

20 JETPTR jet airways

21 VICPTR victor airways

28 RTEPTR standard route airways
32 RESPTR restricted areas

36 ADZPTR air defense zones

40 CDZPTR coastal defense zones

The longitudinal strip data consists of airfields, GRPs,
NAVAIDs, and obstruction points existing within two degree
increments of longitude. A strip is made up of a longitude
boundary pair followed by four address pointers to the
previously mentioned strip data items. The format of the
various strip items is shown below. Note that a zero
terminater word is used to denote the end of any block of
navigation data.

AIRFIELDS:
OFFSET TYPE DATA

0 CHAR*4 airfield name

4 CHAR*1 " " (always blank)

5 not used

6 REAL*4 control tower latitude (deg)
10 REAL*4 control tower longitude (deg)
14 INT*4 pointer to next strip airfield
18 REAL*4 main runway length (ft)
22 REAL*4 main runway true heading (deg)
26 REAL*4 local magnetic variation (deg)
30 REAL*4 elevation
34 INT*14 terminal data block pointer (not used)
36 INT*2 tower frequency (2X5 code)
38 INT*2 clearance frequency (2X5 code)
40 INT*2 ground control frequency (2X5 code)
42 INT*2 ATIS frequency (2X5 code)
44 INT*4 pointer to list of SIDs
48 INT*4 pointer to list of STARs
52 INT*4 pointer to list of APPROACHSs
506 INT*4 airfield ID pointer

60 nx48 runway data blocks

PRECEDING PAGE BLANK NGT ' MED
PABE_ 55 INTENTIONALLY BLANK

-60-

STANDARD INSTRUMENT DEPARTURE (SID) &

STANDARD TERMINAL ARRIVAL ROUTE (STAR):

AIRFIELDS -

QFFSET TYPE
0 CHAR*6

6 INT*4

10 INT*4
14 INT*4
18 REAL*4
22 REAL*4
26 REAL* 4
30 REAL*4
(N-1)*20+14

(N-1) *20+34

DATA

SID name

next item pointer (used for last wpt access)
SID ID pointer

first waypoint pointer

first waypoint assigned altitude (ft)

first waypoint assigned speed (kt)

first waypoint assigned radius (ft)

first waypoint DME arc bearing (deg)

Nth waypoint pointer

zero terminater

AIRFIELDS - APPROACHES:

These are identical to SID/STAR data format except for the
insertion of a runway pointer at offset ten which increases
all offsets above ten by four bytes.

AIRFIELDS - RUNWAYS:

OFFSET
0
3
4
8

12
16
20
24
28
32
36
40
44

TYPE
CHAR*3
BYTE

REAL*4
REAL*4
INT*4

REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
INT*4

INT*4

GROUND REFERENCE

OFFSET
0
5
)
10
14

TYPE
CHAR*5
BYTE
REAL*4
REAL*4
INT*4

DATA

runway name

not used

threshold latitude (deg)
threshold longitude (deq)
outter marker pointer
MLS/ILS latitude (degq)
MLS/ILS longitude degq)
runway length (ft)

runway true heading (deg)
runway elevation (ft)
glide slope angle (deg)
ILS frequency (2X5 code)
missed approach path pointer (not used)

POINTS (GRPs):

DATA

GRP name

compulsory report flag
GRP latitude (deg)

GRP longitude (deg)
navaid pointer

NAVIGATIONAL AIDS

OFFSET TYPE
0 CHAR*3
3 BYTE
4 INT*4
6 REAL*4
10 REAL*4
14 REAL*4
18 REAL*4
22 INT*4
OBSTRUCTIONS:
OFFSET TYPE
0 BYTE
1 CHAR*S
6 REAL*4
10 REAL*4
AIRWAYS:
OFFSET TYPE
0 CHAR* 6
6 INT*4
10 INT*4
4* (N-1)+10
4* (N-1)+14
COMPANY ROUTES:
OFFSET TYPE
0 CHAR* 6
6 INT*4
10 INT*4
14 INT*4
18 INT*4
22 INT*4
26 INT*4
4* (N-1)+26

4* (N-1)+30

(NAVAID) :

DATA

navaid name

bit set O:compulsory 1l:vortac
2:non-directional 3:high alt 7:always
frequency (2X5 code)

navaid latitude (deg)

navaid longitude (degq)

local magnetic variation (deg)
altitude (ft)

navaid ID pointer

DATA

bit 7 set: obstruction, else mountain
obstruction altitude

obstruction latitude

obstruction longitude

DATA

airway name

pointer to next airway
waypoint #1 pointer

waypoint #N pointer
zero terminator

DATA

route name

pointer to next route

origin airfield pointer
destination airfield pointer
SID pointer

STAR pointer

waypoint #1 pointer

waypoint #N pointer
zero terminator

62

BOUNDARIES:

OFFSET TYPE
0 INT*2
2 CHAR*6
8 REAL*4
12 REAL*4

8*% (N-1) +8

8* (N-1)+12

8* (N-1) +16

DATA

not used

boundary #1 name

bound #1, point #1 latitude
bound #1, point #1 longitude

bound #1, point #N latitude
bound #1, point #N longitude
zero terminater

(boundary #2-N; terminated with zero word)

TEXT ID BLOCK:
OFFSET TYPE
0 BYTE

1 CHAR*N

DATA
ID character count
ID text

~63-

Section 6.1.2 WAYPOINT CONSTRAINTS (CONBUF)

The constraint buffer holds altitude, speed, and
turn radius values specified for flight plan waypoints.
The connection between the route and the various
constraint buffer packets is the ".CPTR" node of the
route buffer structures (see Section 1.5.1.5). When
the route buffer element is a route function ".CPTR"
will be an index of a linked list of constraint packets
in the buffer. Note that waypoint constraints from the
system database and cruise altitude assignments do not
appear in the constraint buffer. The structure of the
constraint buffers is as follows.

INTEGER*4 CONBUF (4, 50) ! 50 PACKETS OF 4 LONG WORDS EACH.

CONBUF (1,I) 0-15: RTE OFFSET TO WAYPOINT (0 FOR NON-RTE WPT)
16-18: ALT/SPD/RAD DEFINED FLAG
19-22: UNUSED
23: ACTIVE CONSTRAINT FLAG
24-31: INDEX TO NEXT RTE CONSTRAINT (0 ~ NO MORE)
CONBUF (2,I) 0-31: ALTITUDE CONSTRAINT VALUE
CONBUF (3,I) 0-31: SPEED CONSTRAINT VALUE
CONBUF (4,I) 0-31: RADIUS CONSTRAINT VALUE

65.

Section 6.1.3 HOLDING PATTERN DATA (HLDBUF)

The common block "HOLD"™ is a section of memory reserved
for holding pattern data created by hold page modules. The
memory allocation is defined in the file HLDBUF.MAR. This
file contains definitions for a four waypoint airway and
four GRPs used as hold waypoints. The format of these
blocks is the same as those used in AADCOM (see section
1.5.1.1). The difference between the AADCOM and HLDBUF
structures is that AADCOM is predefined read-only memory and
HLDBUF is a template filled in holding pattern procedures.

PRECEDING PAGE BLANX NG vi.MED

2ABE (o &\ INTENTIONALLY BLAMK

67

Section 6.1.4 PILOT DEFINED WAYPOINTS (PPT WPT)

The pilot defined waypoint buffer is used to save
information for waypoints created through calls to
the function MAKE WPT. Pilot waypoints are made for
runway selection, aircraft position reference, bearing/
range from reference point, and absolute position
selection. The Fortran allocation is shown below.

STRUCTURE /PPTS/
CHARACTER*5 NAME
BYTE BITS
REAL LAT, LON, ALT, SPD
CHARACTER*16 TEXT

END STRUCTURE

RECORD /PPTS/ PPT WPT (20)

The ".BITS" node of the structure is set to indicate
when altitude and speed have been supplied for the pilot
waypoint. Bit #0 is set for altitude definition and bit
#1 is set for speed definition. The ".TEXT" node is set
to the CDU command string entered by the pilot which
caused the pilot waypoint creation. This text may be
viewed on the NAV DATA page of the CDU.

‘ ~ A ! I" !."“»-Mﬂ;’
PAGE __@J_JNTENHONALLY BLANK prapcENG PAGE BLAYY Nt

69.

Section 6.1.5 THE ROUTE BUFFERS (RTE_MOD/RTE ACT)

The route buffers
There is one for the
modified plan. Each
structure definition

STRUCTURE /RTE/
INTEGER*4 ADDR
BYTE TYPE, CPTR
UNION

MAP
INTEGER*2 RWY
END MAP
MAP
INTEGER*2 EXIT
END MAP
END UNION
END STRUCTURE

are in the global common area CDUCOM.
active flight plan and one for the
has room for 30 route elements. The
is shown below.

RECORD /RTE/ RTE_MOD (30), RTE ACT(30)

The nodes of the structure are described in the following

list.

to the same memory location.

Note that ".RWY" and ".EXIT" are duplicate references

This is because both nodes are

not used for the same route element.

.ADDR Memory address of the route element. May point to
a location in AADCOM, HLDBUF, or PPT WPT.

.TYPE Route element type as follows.
DISCONTINUITY = 0, AIRFIELD = 1, GRP = 2,
NAVAID = 3, PILOT WPT = 4, HOLD PATTERN = 5,
APPROACH = 6, SID = 7, STAR = 8, AIRWAY = 9

.CPTR Constraint buffer index.

.RWY Runway waypoint. l:origin 2:destination

.EXIT Route function offset to exit waypoint address.

)
PAOE__QQQ_MJNTENUONALLY BLANK

PRECEDING PAGE BLANK NOT FILMED

71

Section 6.1.6 THE WAYPOINT BUFFERS (WPT_MOD/WPT_ACT)

The waypoint buffers contain the actual waypoint data
which defines the entire flight plan. WPT ACT is used for
the active flight plan while WPT MOD has the path which
is under modification. WPT MOD is re-created each time
a flight plan change is entered on the CDU. The waypoint
buffer is actually an expansion of the data already exist-
ing in the route buffer. Each route element is replaced
by one or more waypoints having any constraints defined
by CONBUF (see section 1.5.1.2), the cruise altitude, or
AADCOM predefinition. A number of waypoint buffer
parameters are computed from the geometry of the waypoints
taken from the expansion process. This "Path Definition"
phase, performed by the procedure PATHDF, starts when the
expansion process is complete. The structure template of
the waypoint buffers is shown below followed by a
description of each of the parameters.

STRUCTURE /WPTS/
CHARACTER*S5 NAME
BYTE DMA, SOURCE, PHASE, ALTF, SPDF, RADF, FILL
INTEGER*4 RNAV, ETA
REAL LAT, LON, ALT, GS, TIME, CCD
REAL ARC2, DTT, RAD, BRNG, ANGLE, ERAD, PPD
REAL WPV (3), TCV(3), NMV(3)
REAL IAS, TCLAT, TCLON, WSPD, WDIR, MGVR, TDEV, FPA
END STRUCTURE
RECORD /WPTS/ WPT_ACT (30), WPT_ MOD (30)

.NAME Waypoint name.

.DMA 1:DMA turn start, 2:DMA turn stop, else 0.

-SOURCE Index into route buffer indicating the element
the waypoint was expanded from.

.PHASE Phase of flight; l:climb 2:cruise 3:descent
0:undefined

.ALTF Altitude defined flag; 0O:undefined l:explicit
definition (AADCOM, PPT WPT,CONBUF), 2:implicit
defintion (cruise alt,’P0OS’ updatable wpt). If
equal 2, shown in small font on LEGS page.

. SPDF Speed definition flag; see .ALTF

.RADF Radius definition flag; 0:computed l:assigned

.FILL Keeps remaining nodes on long word boundary.

.RNAV Radio navigation aid address pointer.

.ETA Estimated time of arrival (seconds past midnight).

.LAT Waypoint latitude (degq).

. LON Waypoint longitude (deg).

LALT Waypoint altitude (ft).

.GS Waypoint ground speed (kt).

.TIME Leg time from last waypoint (seconds).

.CCD Turn center to turn center distance (ft).

NG PAGE HI AN Jo— :
PAGEQO PRECEDING PAGE BLANX NOT FILMED

~—— INTENTIONALLY (o

._72_

.ARC2 One half turn arc length (ft).

.DTT Distance from waypoint to turn tangent point (ft).

.RAD Turn radius (ft).

.BRNG Inbound leg bearing or DME waypoint bearing (degqg).

.ANGLE Turn angle (deg; -:left +:right)

.ERAD Local earth radius value (ft).

.PPD Point to point distance from last waypoint (ft).

.WPV Farth center to waypoint unit vector.

.TCV Earth center to turn center unit vector.

. NMV Normal unit vector. Perpendicular to plane formed
by earth center, previous, and current waypoints.

. IAS Waypoint airspeed (not used).

. TCLAT Turn center latitude (deg).
. TCLON Turn center longitude (deg).

.WSPD Local wind speed (not used).

.WDIR Local wind direction (not used).

.MGVR Local magnetic variation (deg).

.TDEV Local temperature deviation (not used).
.FPA Leg flight path angle from last waypoint.

A subset of the waypoint buffers is copied into other
waypoint buffers for transmission to the Display VAX.
This is done to save time since I/0O time for 30 copies
of waypoint data is significant. The copying of the data
is performed in the background also to utilize available
"fast loop" processing time. The structure of the display
waypoint buffer is shown below. All the nodes match the
structure described above except for ".CODES". The .DMA,
.ALTF, and .SPDF data mentioned above are packed into one
byte in the display waypoint buffers. Bits 0 & 1 are used
for the DMA index and bits 2 & 3 are used for the altitude
and speed booleans respectively.

STRUCTURE /DWPTS/
INTEGER*4 ETA
REAL LAT, LON, ALT, GS, TIME, CCD, ARC2, DTT, RAD, BRNG
REAL ANGLE, ERAD, PPD, WPV (3)
CHARACTER*5 NAME
BYTE CODES
END STRUCTURE
RECORD /DWPTS/ MOD WPTS(30), ACT_WPTS(30)

73

Section 6.2 FLIGHT PLAN DATA PROCESSING

This section covers the internal operations performed
on the flight plan data buffers. The 23 modules described
here are contained in four files named EXECUTE.FOR,

XLAT RTE.FOR, PATHDF.FOR, CONST.FOR. These modules use

the constraint buffer, navigation database, holding pattern
data, pilot waypoint buffer, and the route buffer to create
a provisional waypoint buffer which, upon pilot acceptance,
becomes the active waypoint buffer.

The various clearance pages of the CDU have three modes
of operation; original clearance, modified clearance, and
active clearance. The current mode is shown with the first
three characters of the title line of clearance pages as
follows.

" " - orignal clearance
"MOD" - modified clearance
"ACT" - active clearance

The original clearance mode is active by default upon
starting the system or when the origin airfield is entered
on the ROUTE page of the CDU. At this time RTE MOD has
the provisional flight plan and RTE ACT is undefined. Once
the original clearance is EXECuted by the pilot the mode
becomes ACT. At this time RTE_MOD and RTE ACT both contain
the active flight plan. When changes are made to the active
plan the CDU mode becomes MOD. RTE ACT will contain the
active flight plan being used by guidance, however the CDU
shows the modified flight plan stored in RTE MOD.

Creation of a new "MOD" waypoint buffer is started when
a CDU page handler receives a flight plan input and calls
the procedure DEMODE. Acceptance of the new flight plan
can be automatic, depending on DEMODE parameters, or may
require pilot interaction. The pilot may however choose to
reject the modified route and return to the last active plan.
These operations are performed by the modules EXECUTE and
REJECT.

._'75_

Section 6.2.1 CONSTRAINT BUFFER USAGE

The constraint buffer is used to store altitude, speed,
and turn radius constraints for route waypoints. The
constraints are entered manually on the CDU through the
LEGS page. The format of this buffer is described in
section 1.5.1.2. Seven procedures perform various oper-
ations on the constraint buffer. Module descriptions of
each are provided on the following pages.

pace ")\ INTENTIONALLY BLAMR PRECHEMAWT PAGE 1A% NG FLUMED

.76

MODULE NAME: CLEAN_CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: EXECUTE, REJECT

CALLING SEQUENCE: CALL CLEAN_ CON

PURPOSE:
To identify unused packets of the constraint buffer.

DESCRIPTION:

This module performs clean-up on the CDU constraint
buffer. When a flight plan is executed or changes to the
active flight plan have been rejected, both the "ACT" and
"MOD" route buffers are identical. At this time "CLEAN CON"
is called to identify which of the 50 constraint buffer
packets of data are actually used. All others are marked as
free for future use while the used packets are flagged as
active constraints.

A 50 byte array of booleans (USED) is initialized as false
(not used). Each ".CPTR" pointer is followed into the linked
list of constraints. As each constraint is found the "active
constraint" bit is set and the corresponding USED byte is set
true. When finished, the first long word of each constraint
packet not denoted as used is cleared to designate it as
available.

GLOBAL REFERENCES:

ARRAYS
CONBUF* CONBYT RTE CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
CLRBUF

=-77-

MODULE NAME: COPY_CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: KILL CON, NEW CON

CALLING SEQUENCE: NEW_INDEX = COPY _CON (OLD_INDEX)

PURPOSE:
To copy a constraint list to other free constraint
buffer locations.

DESCRIPTION:

This function is called to copy a constraint list starting
at the packet indicated by the OLD INDEX input parameter.
The data is copied to free packets in the constraint buffer
and the index of the new list is returned as the function
value.

The linked list pointers are followed and for each
old constraint packet a call to FIND EMPTY is made to get an
available block. The old data is copied to the new locations
and the "active constraint" bit of the new data is cleared.

GLOBAL REFERENCES:

ARRAYS
CONBUF CONBYT

FUNCTIONS AND SUBROUTINES
FIND EMPTY LIBS$MOVC3

78

MODULE NAME: FIND EMPTY

FILE NAME: CONST.FOR

PROCESS: SLOW

CALLED BY: COPY_CON, HLD_POS, NEW_CON
CALLING SEQUENCE: INDEX = FIND EMPTY () -
PURPOSE:

To locate an available constraint packet.

DESCRIPTION:

This function returns the index of the first free packet
in the constraint buffer. The first long word of each
packet is examined until an available set is found (equal 0).
If all 50 constraints are used the CDU error code is set to
#4 and a return to the caller’s caller is performed.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
CONBUF

FUNCTIONS AND SUBROUTINES
RET

-7 9_

MODULE NAME: GET_CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: RTE, XLAT RTE

CALLING SEQUENCE: GET_CON(RTE_PTR, OFFSET, WPT_PTR)

PURPOSE:
To store constraints into waypeint buffer locations.

DESCRIPTION:

This procedure is called with an index into the route
buffer (RTE PTR) of the route element containing a par-
ticular waypoint. If the route element is a route function
then the database offset is also supplied. Any constraint
data existing for the waypoint is fetched and copied to the
waypoint buffer for the waypoint designated by the parameter
list index WPT PTR. The waypoint buffer flags .ALTF, .SPDF,
and .RADF are set appropriately.

Note that when the route element is a route function, the
constraint buffer contains a linked list which must be
followed until a matching offset value is found or the end
of the list is encountered.

GLOBAL REFERENCES:

ARRAYS
CONBUF CONBYT CONWRD

RECORD ARRAYS -
RTE MOD WPT_MOD*

.80

MODULE NAME: KILL_ CON

FILE NAME: CONST.FOR

PROCESS: SLOW

CALLED BY: NMBRS

CALLING SEQUENCE: CALL KILL CON(WPT_PTR, CODE)
PURPOSE:

To remove one or more constraints from a waypoint.

DESCRIPTION:

This procedure is called to remove one Oor more con-
straints associated with a particular waypoint buffer
waypoint. If the constraint packet is designated as an
active set, a copy of the packet is made and the route
buffer element is redirected to the new copy. The
assignment bits (16-18 of first long word) of the constaint
packet are cleared as indicated by the CODE input parameter.
If the constraint packet becomes null it is removed from
the linked list or the route buffer pointer (CPTR) is
cleared if it were the only constraint packet.

GLOBAL REFERENCES:

ARRAYS
CONBUF CONBYT* CONWRD

RECORD ARRAYS
RTE MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
COPY CON RTE_WPT WPT_ADDR

81

MODULE NAME: NEW_ CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: NMBRS, XFER CON

CALLING SEQUENCE: variable (see below)

PURPOSE:
To insert waypoint constraints into the constraint buffer.

DESCRIPTION:

This module is called to add a constraint to a waypoint
on the flight plan. The waypoint may have other constraints
already defined. Two calling sequences exist for this
module, as shown below. The module P LIST is used to determine
which calling sequence was used.

CALL NEW_CON(WPT_PTR, V_TYPE, VALUE)
CALL NEW _CON(,V_TYPE, VALUE, RTE_PTR, RTE_OFF)

WPT PTR Index into waypoint buffer of selected waypoint.

V TYPE Type of constraint: 1=altitude 2=speed 3=radius
VALUE Constraint value.

RTE PTR Rte buffer index of rte element owning selected wpt .
RTE_OFF Offset into rte function for rte type waypoint.

The constraint pointer of the route element corresponding
to the selected waypoint is fetched. It is used to determine
if a constraint packet already exists for the waypoint. If
saved constraints for the route element have the "active" bit
set, a duplicate copy is made so modifications may be made.
When the pointer points to a linked list, the links must be
followed to determine the existence of data for a particular
waypoint. When constraint data already exists, the fields of
the packet are simply updated. Otherwise a new packet is
created. When the waypoint is part of a route function
which has other waypoint constraints, the new packet is
inserted into the linked list chain.

GLOBAL REFERENCES:

ARRAYS
CONBUF* CONBYT* CONWRD*

RECORD ARRAYS
RTE_MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
COPY _CON FIND_EMPTY P_LIST RTE WPT WPT ADDR

82

MODULE NAME: XFER_CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: MERGE, NEW ENTRY

CALLING SEQUENCE: CALL XFER_EON(FROM, OFFSET, TO)

PURPQOSE:
To transfer constraint data.

DESCRIPTION:

This procedure is called to transfer existing waypoint
constraints to another waypoint. Both waypoints must be part
of a route function which is indicated by the route buffer
pointer FROM/TO and the route function offset, OFFSET.

This procedure is used by routines which split a single route
function into a repeated pair of route functions with different
entry/exit points.

GLOBAL REFERENCES:

ARRAYS
CONBUF CONBYT CONWRD

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
NEW_CON

-83-

Section 6.2.2 ROUTE TRANSLATION AND PATH DEFINITION

The modified route buffer (RTE MOD) and other basic
flight plan database elements are combined to form the
provisional waypoint buffer (WPT MOD). The procedures on
the file XLAT_RTE.FOR perform this task. Once the route
buffer has been translated into a basic waypoint buffer, the
path definition procedures contained in the file PATHDF .FOR
are called to create the mathematical constructs associated
with using the waypoint buffer as a guidance buffer. The
translation and definition process is started by a call to
the procedure DEMODE any time a flight plan modification is
made on the CDU. The following pages contain the module
descriptions for these routines.

84

MODULE NAME: CREATE BUF

FILE NAME: EXECUTE.FOR
PROCESS: SLOW

CALLED BY: DEMODE, EXECUTE

CALLING SEQUENCE: CALL CREATE BUF (COUNT, WPT_BUF, DSP_BUF)

PURPOSE:
To move selected portions of the waypoint buffer to the
display waypoint buffer.

DESCRIPTION:

This procedure is called with a waypoint count and one
of the waypoint buffers as inputs. It stores portions of
the waypoint buffer into one of the display waypoint
pbuffers as the sole output parameter.

For each waypoint sixty-eight consecutive bytes of data
starting at the .ETA parameter are moved to the display
puffer. Then the .DMA, .ALTF, and .SPDF data is packed into
the .CODES bytes of the display buffer.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
LIBSMOVC3

85

MODULE NAME: DEMODE

FILE NAME: EXECUTE.FOR

PROCESS: SLOW

CALLED BY: FLT TYPE INP, HLD POS, HOLD INPUT,

INTC_WPTS, LINK CMD, MOD ROUTE, NEWCRZ,
ROUTE, TIME_IN, UPDATE POS, WPT_DATA
CALLING SEQUENCE: CALL DEMODE (MODE_ FLAG)

PURPOSE:
To initiate the creation of a new waypoint buffer.

DESCRIPTION:

This procedure is called when a change is made to the
flight plan. If the change is made to the active plan
the CDU demodes to the provisional plan status indicated
by the text "MOD" on the header of clearance pages. DEMODE
initiates the translation of the route buffer to a complete
waypoint buffer. There are three modes of operation for
this module; Auto execute, No execute, and No trim. The
normal sequence occurs for the No execute mode. The active
plan waypoints already over-flown are trimmed away and the
route translation occurs always leaving the CDU in the MOD
plan mode. The No Trim mode is the same as No execute but
the removal of passed waypoints is not performed. If the
changes made to the flight plan do not require final
approval from the pilot through EXEC selection, the Auto
execute mode is used.

The first test in DEMODE determines if the current CDU
mode is "Active". If it is, DEMODE will enable auto execute
if requested, and perform the waypoint trimming by calling
TRIM WPTS. The current destination waypoint pointer PTR2D
is saved to be used later when the pilot executes the
modified plan. Next consecutive route discontinuities are
removed from the route buffer and the route buffer to
waypoint buffer translation is performed through calls to
DSC_CHECK and XLAT RTE respectively. Once the waypoint
buffer is created it is either made active, if Auto execute
is enabled, or several tests are made on the new buffer.

If the modified waypoint buffer WPT MOD starts with at least
two waypoints before any route discontinuity markers the
EXEC light flag is set. Also if the buffer contains any
route discontinuity markers the DSPLY light flag is set.

The final steps of the waypoint buffer creation process
are to create the display waypoint buffer subset and expand
the provisional route to data-link text description if
expansion is enabled. The display buffer is created by
calling CREATE BUF and the transmission to displays is
activated by clearing GDTIME.

-86—

GLOBAL REFERENCES:

VARIABLES
CDU CMD GDTIME* LT DSPY* LT EXEC* MODCNT PMODE* PTR2D

SAVPTR*

ARRAYS
RTE_CNT

RECORD ARRAYS
MOD WPTS RTE_MOD WPT_ MOD

FUNCTIONS AND SUBROUTINES
CREATE BUF DSC_CHECK EXECUTE EXPAND_RTE TRIM WPTS XLAT_RTE

87

MODULE NAME: DSC_WPT
FILE NAME: XLAT RTE.FOR
PROCESS: SLOW

CALLED BY: XLAT RTE, RTE

CALLING SEQUENCE: CALL—DSC_WPT(WPT_INDEX, RTE INDEX)

PURPOSE:
To insert a route discontinuity into the waypoint buffer.

DESCRIPTION:

This subroutine is called to insert a discontinuity
marker into the flight plan. One is inserted only if the
previous waypoint entry was not also a discontinuity marker
and there is room in the waypoint buffer. The discontinuity
is associted with the route buffer via the source index "I".

GLOBAL REFERENCES:

RECORD ARRAYS
WPT MOD*

~-88~-

MODULE NAME: FIND_CCD

FILE NAME: PATHDF .FOR

PROCESS: SLOW

CALLED BY: PATH

CALLING SEQUENCE: CCD = FIND CCD(TO_ADJUST)
PURPOSE::

To compute the CCD parameter in the waypoint buffer.

DESCRIPTION:

The turn center to turn center distance (CCD) differs
from the waypoint to waypoint distance for "Pass By"
waypoints. The adjusment at each end of the leg is
the tangent distance minus half the turn arc length
(DTT-ARC2). The "From Waypoint" adjustment is computed
in this procedure and the "To Waypoint" adjustment is
passed as a parameter to avoid DMA arc entry waypoint
testing.

Checks are made to assure that the leg being processed
has proper geometry at both ends. When the sum of the
tangent distance becomes larger than the point to point
distance a "Bad Radius"™ situation has occured. This
means a "Pass By" turn is to large for the given leg
length. The offending turn radius is set to zero and
the path definition waypoint index is reset to force
the calling module to recompute parameters using the
new turn radius.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

RECORD ARRAYS
WPT_ MOD

89

MODULE NAME: LOCAL_ERAD

FILE NAME: PATHDF .FOR

PROCESS: SLOW

CALLED BY: PATH, NEW POS, POINTS

CALLING SEQUENCE: COMMON /PTHCOM/ LAT FEET, LON_FEET, RAD
CALL LOCAL_ERAD (ALT, SIN_LAT, COS_LAT)

PURPOSE:
To compute local earth radius values.

DESCRIPTION:

This procedure uses the input parameter for waypoint
altitude, and sine/cosine of latitude to compute local
earth radius values. The computed values, returned through
common PTHCOM, are the earth radius to waypoint and the
number of feet per degree of both latitude and longitude.

GLOBAL REFERENCES:

VARIABLES
LAT FEET* LON_FEET* RAD*

-90-

MODULE NAME: PATH

FILE NAME: PATHDF .FOR

PROCESS: SLOW

CALLED BY: PATHDF

CALLING SEQUENCE: CALL PATH (START_INDEX, END_INDEX)
PURPOSE:

To compute flight plan parameters required by guidance
and display software.

DESCRIPTION:

This procedure computes many of the guidance buffer
parameters associated with the aircraft flight plan, which
are contained in the structure "WPT _MOD". Several of the
structure nodes are filled by "XLAT RTE" before calling this
subroutine. The following list shows which parameters of
"WPT MOD" are computed. Some values are not computed for all
waypoints, therefore these exceptions are noted.

WPT_ MOD (I) " .XXX"

LAT waypoint latitude INBOUND DMA WPTS ONLY
LON waypoint longitude INBOUND DMA WPTS ONLY
PPD point to point distance ALL WPTS

DTT distance to tangent ALL WPTS

ARC2 one half arc length ALL WPTS

ANGLE turn angle ALL WPTS

CCD center to center distance ALL WPTS

BRG bearing ALL EXCEPT OUTBOUND DMA
TCLAT turn center latitude ALL EXCEPT INBCUND DMA
TCLON turn center longitude ALL EXCEPT INBOUND DMA
FPA flight path angle ALL WPTS

TIME delta time ALL WPTS

ERAD local earth radius ALL WPTS

WPV waypoint vector ALL WPTS

NMV unit normal vector ALL WPTS

TCV turn center vector ALL WPTS

PATHDF computes the guidance parameters in two passes
through the waypoint buffer. The exact mathematical
concepts invloved with the various parameters are dis-
cussed in Appendix A.

During the first pass the waypoint vectors (WPV), normal
vectors (NMV), point to point distances (PPD), and local
earth radius (ERAD) values are computed for each waypoint.
WPV and ERAD are computed by calls to XYZ and LOCAL_ERAD
respectlvely NMV is the cross product of the current and
prev1ous waypoints WPV vectors. These WPV values are also
used in combination with the ERAD value to compute PPD using
the arc length formula Arc_length = Radius * Angle_ radians.
DMA waypoint repositioning occurs also during the first pass.

91

When PATHDF encounters a DMA entry waypoint, new latitude and
longitude values are computed from the turn center

previously stored as LAT/LON. The old LAT/LON values are
moved to the turn center locations (TCLAT/TCLON). The new
LAT/LON values are found from the turn center position,
bearing from turn center to new position, and the turn

radius which are all fetched from AADCOM and stored by

XLAT RTE prior to calling PATHDF.

The remaining guidance parameters are computed during the
second pass through the waypoint buffer. None of the
parameters for the second pass are computed for the first
waypoint. Several are not assigned for the last waypoint
(ANGLE, ARC2, DTT, TCV, TCLAT, TCLON). There are three
guidance buffer parameters that are handled identically
for all types of waypoints. These are RAD, FPA, and TIME.
For a DMA entry waypoint only the CCD value is computed.

The TCV, CCD, and previous waypoints ARC2 parameters are
computed when the waypoint is a DMA arc exit waypoint. For
standard waypoints the BRNG, CCD, ANGLE, ARC2, DTT, TCV,
TCLAT, and TCLON values are set.

When starting and ending tangent distances (DTT) for a
leg are large enough to overlap, a "Bad Radius" turn exists.
The module FIND CCD makes a zero radius turn at the offending
waypoint and signals PATHDF to recompute guidance parameters
for the new turn radius. The waypoint with the redefined
turn radius appears on the LEGS page of the CDU with an
asterisk.

GLOBAL REFERENCES:

VARIABLES
COS_LAT LAT_FEET LON FEET RAD SIN LAT

RECORD ARRAYS
WPT MOD*

FUNCTIONS AND SUBROUTINES
FIND_CCD GRID LOCAL ERAD MTHS$ASIN MTHS$SASIND MTHSATAN2
MTHSATAND2 SCOSD UVC VCP VDP VMG XYZ

92

MODULE NAME: PATHDF
FILE NAME: PATHDF .FOR
PROCESS: SLOW
CALLED BY: XLAT RTE

CALLING SEQUENCE: CALL PATHDF

PURPOSE:
To initiate path definition computations.

DESCRIPTION:

This subroutine is the main driver of the path definition
process. Calls to "PATH" are made after delimiting groups of
consecutive waypoints in the provisional waypoint structure
"WPT MOD". Usually one call to "PATH" is made for the
entire set of waypoints, however multiple calls are made
when route discontinuities exist in the flight plan. The
effect of this is to make several disjoint path segments in
one waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
MODCNT

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
PATH

93

MODULE NAME: RTA TIMES
FILE NAME: XLAT RTE.FOR
PROCESS: SLOW

CALLED BY: XLAT RTE

CALLING SEQUENCE: CALL_RTA_TIMES

PURPOSE:
To set arrival times in the waypoint buffer.

DESCRIPTION:

The Requested Time of Arrival (RTA) waypoint is located
in the waypoint buffer. When the waypoint no longer
exists the RTA parameters are reset. Otherwise the selected
RTA time is assigned to the RTA waypoint and the remaining
waypoint times are set according to the stored leg time
values.

GLOBAL REFERENCES:

VARIABLES
MODCNT RTA INDX* RTA TM RTA WPT*

RECORD ARRAYS
WPT MOD*

94

MODULE NAME: RTE

FILE NAME: XLAT_RTE.FOR
PROCESS: SLOW

CALLED BY: XLAT RTE

CALLING SEQUENCE: CALL—RTE(RTE_INDEX, WPT_ INDEX)

PURPOSE:
To store route waypoints in the waypoint buffer.

DESCRIPTION:

This subroutine is called by "XLAT_RTE" when a route
function is encountered while translating the route buffer.
All the waypoints for a complete route function (both entry
and exit waypoints defined) are placed in the WPT buffer
through calls to "WPT", except for the entry waypoint.
Since the route buffer defines the entry WPT as a separate
route buffer element the entry waypoint will already be placed
in the waypoint buffer when the route function is being
processed. The only thing "RTE" does for the entry waypoint
is the search of the constraint buffer mentioned below.
When the route function is not an airway, the speed,
altitude, and DMA turn information is fetched from the
navigation database (AADCOM). The last processing of each
waypoint consists of calling GET_CON to extract constraint
data. Note that previously stored AADCOM values will be
overwritten if higher priority constraint buffer values
exist.

When a route function’s entry waypoint has not been
defined a discontinuity will already exist in the waypoint
puffer. In this case the exit waypoint only is saved
following the discontinuity. For the reverse situation a
discontinuity is stored after the existing entry waypoint
for the missing exit waypoint. When niether is defined one
discontinuity is placed in the waypoint buffer for the
entire route function.

A distinction is made between airways and other route
functions (SID STAR APPROACH HOLD). Each airway waypoint
is assigned a "cruise" phase of flight and the current
cruise altitude, which may be overridden later during the
constraint buffer fetches. For non-airway route functions,
SIDs are assigned the "climb" phase of flight while others
are set to "descent". The altitude, speed, and turn
radius is fetched from the navigation database (AADCOM)
or the hold buffer (HLDBUF). The turn radius may contain
a zero which is a cue to the path definition routine to
compute the value. The fetched altitude is also used as
a flag. When negative, the current waypoint is a DMA turn
entry waypoint and the following waypoint is a DMA turn
exit waypoint. The DMA bearing and turn angle are also
fetched from the database in these cases.

GLOBAL REFERENCES:

VARIABLES
CRZALT

RECORD ARRAYS
RTE_MOD WPT_ MOD*

FUNCTIONS AND SUBROUTINES
BOUNDS DSC_WPT GET_CON GET_LONG GET_REAL TYPE WPT WPT

95

-06-

MODULE NAME: TRIM WPTS

FILE NAME: EXECUTE.FOR

PROCESS: SLOW

CALLED BY: DEMODE, ADD WPT, DIRECT
CALLING SEQUENCE: CALL TRIM WPTS (NEXT_WPT_INDEX)
PURPOSE:

To remove passed waypoints from the active flight plan.

DESCRIPTION:

This procedure is called to eliminate the beginning way-
points from the route buffer which have already been passed
on the active flight plan. When the deletion splits a
route function a new entry waypoint is created.

The input parameter NEXT_WPT_INDEX points to the end
waypoint in the waypoint buffer of the leg which is to
become the first leg of the route. The route buffer element
corresponding to the waypoint before the chosen waypoint is
examined to determine its type. If the route element is a
single waypoint, all the route elements up to and including
the tested one are removed from the route buffer (RTE MOD)
by calling KILL. When a route function is encountered the
procedure NEW ENTRY is used to split the route function
into the portion that is to be saved. Then the prior
elements are removed by calling KILL.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE MOD WPT_MOD

FUNCTIONS AND SUBROUTINES
BOUNDS KILL NEW ENTRY RTE WPT WPT_ADDR

97

MODULE NAME: WPT

FILE NAME: XLAT RTE.FOR

PROCESS: SLOW

CALLED BY: XLAT RTE, RTE

CALLING SEQUENCE: CALL WPT (RTE_ INDEX, WPT INDEX, ADDR, TYPE)
PURPOSE:

To store waypoint data into the waypoint buffer.

DESCRIPTION:

This subroutine is called to place a waypoint in the next
available position of the modified waypoint buffer (WPT_MOD) .
The following items are stored for each waypoint.

.NAME 5 character WPT name padded with blanks on the right.
.LAT Waypoint latitude position.

.LON Waypoint longitude position.

.RNAV database address pointer to local navaid.

.MGVR Local magnetic variation wvalue.

.SOURCE Index into rte buffer which associates a waypoint
with the rte buffer data that caused its creation.

If the waypoint is a pilot defined waypoint four other items
may be set.

JALT Altitude constraint.
.ALTF Altitude definition flag.
.GS Ground speed constraint.
.SPDF Speed definition flag.

The data is fetched using the input address parameter
which is a pointer into AADCOM, HLDBUF, or PPT WPT. The
TYPE parameter determines how the data is fetched. The .LAT,
.LON, .MGVR, and .SOURCE paramters are set identically for
all types. Other parameters are set as follows.

AIRFIELD: 4 character name / no navaid pointer (0).

GRP: 5 character name / navaid fetched from GRP
block in database (ADDR+14).

NAVAID: 3 character name / navaid reference is self.

PILOT PT: 5 character name / no navaid / alt & spd data
fetched from pilot buffer (PPT WPT). flags

set according to pilot waypoint type, POS,
PPT, or RWY.

_98..

GLOBAL REFERENCES:

VARIABLES
ERCODE*

RECORD ARRAYS
WPT MOD*

FUNCTIONS AND SUBROUTINES
GET _BYTE GET_CHAR GET_LONG GET_REAL GET_WORD MAG VAR

99

MODULE NAME: XLAT RTE
FILE NAME: XLAT RTE.FOR
PROCESS: SLOW
CALLED BY: DEMODE, HLD POS
CALLING SEQUENCE: CALL XLAT RTE
PURPOSE :
To translate the route buffer into a waypoint buffer.
DESCRIPTION:
This subroutine translates the route buffer "RTE MOD"
into the equivalent waypoint buffer "WPT MOD". The route

buffer consists of waypoints, route functions, and route
discontinuity markers. The waypoint buffer contains just
waypoints and discontinuity markers. First, the entire
memory area reserved for WPT MOD is cleared to initialize
all parameters to zero. Once this is finished each item in
RTE MOD is examined to determine the appropriate action to
perform corresponding to its type. The last step is to call
PATHDF to compute flight plan parameters for each waypoint.

The conversion is done by indexing through each element
of the modified route buffer (RTE MOD). If the route
element is a route function the procedure RTE is called to
store the data for each waypoint contained on the route
function. If the element is a discontinuity marker a call
to DSC_WPT is made. The last possibility is a single
waypoint element. The procedure WPT is called to store the
basic waypoint data followed by a call to GET CON to fetch
any ALT/SPD/RAD constraint data. If no altitude constraint
was found in the constraint data the cruise altitude, if
entered, is assigned to the waypoint.

Once stepping through the route buffer is finished a few
miscellaneous operations are performed. The created way-
point buffer is examined to see if takeoff and landing
runways exist. If not the respective runway addresses are
cleared (AIRPTS(2,1), AIRPTS(2,2)). The waypoint buffer
may not end in a discontinuity marker so the buffer is
checked and the discontinuity is removed if present.

Finally, the procedures PATHDF and RTA TIMES are called
to compute the remaining guidance parameters.

GLOBAL REFERENCES:

VARIABLES
CRZALT MODCNT* RTA WPT

ARRAYS
AIRPTS* RTE_CNT

RECORD ARRAYS
RTE_MOD WPT ACT WPT_MOD

FUNCTIONS AND SUBROUTINES
CLRBUF DSC_WPT GET_CON PATHDF RTA TIMES RTE WPT

-101-

Section 6.2.3 EXECUTE/REJECT THE MODIFIED FLIGHT PLAN

When flight plan entries are complete, either for the
original clearance or a modified active plan, the pilot
must choose between executing or rejecting the provisional
flight plan. The EXEC button of the CDU will be lit when
execution is allowed. If pressed, the provisional plan
becomes the new active flight plan. At this time the MOD
buffers will be identical to their active counterparts
(RTE MOD/ WPT MOD - RTE ACT/WPT _ACT) and the CDU clearance
pages will display "ACT" as the first part of their title
line. When the clearance entries were made as modifications
to an existing active flight plan the "Erase" option is
given. The text "ERASE>" appears on the right hand side
of the last display line of the CDU when on the ROUTE,
LEGS, or TIME pages. If the pilot presses the line select
key adjacent the erase prompt, the changes to the clearance
are removed and the "ACT" mode is returned.

Three modules handle execution and rejection of the
provisional flight plan. Their descriptions are provided
on the following pages.

page_ /00 prexmonaLLy suamm
PRACENN D58 @UANK NCT F MED

-102-

MODULE NAME: EXECUTE

FILE NAME: EXECUTE.FOR
PROCESS: SLOW

CALLED BY: CDUEXC, DEMODE

CALLING SEQUENCE: CALL EXECUTE (MODE)

PURPOQOSE:
To activate the current provisional flight plan.

DESCRIPTION:

This procedure activates the provisional flight plan
by copying the MOD route and waypoint buffers to their
ACT counterparts. A number of simple steps are perfomed
when execution is required. They are enumerated below
in the appropriate sequence. Afterward more detailed
explanation is provided for those parts requiring it.

If a "POS" update waypoint starts the new plan, make
one last update of the waypoint by calling UPDATE_POS.

Signal guidance software (HVGUID) that the flight plan is
temporarily invalid by clearing the 2D, 3D, and 4D
guidance flags.

If not called with Auto execute flag, identify next "To"
waypoint and reset some phase of flight flags.

Copy the modified route buffer (RTE_MOD) to the active
pbuffer (RTE_ACT). If a discontinuity is encountered
terminate the plan at that point.

Copy the modified waypoint buffer (WPT_MOD) to the
active (WPT_ACT). Check altitude and speed definitions
at each waypoint to determine possible guidance modes.

Process execution of holding pattern data if entered
by calling HOLD_SET.

Perform cleanup on the constraint buffer by calling
CLEAN_CON.

Enable guidance remode (SETGD = 2).

Save new active data which may be modified on next plan
changes; airfield info, cruise alt, RTA waypoint.

Fetch destination runway information from navigation
database (AADCOM) .

-103-

If not Auto execute mode reset EXEC and DSPLY lights

and set the active guidance waypoint pointer (PTR2D)

to the previously chosen "To" waypoint. Otherwise

check if PTR2D should be set to the active hold waypoint.

Fill in active display waypoint buffer by calling
CREATE BUF and flag display buffer transmission by
clearing GDTIME.

Selecting a "To" waypoint can be complicated. 1If
there was no previous active flight plan the second
waypoint is designated. If there was an active plan
several tests are made. When a current active leg is
part of a holding pattern the last PTR2D index is used
since waypoint trimming is not used for holding pattern
changes (see DEMODE). When trimming was enabled the
pointer is initialized to the second waypoint. However
the second waypoint corresponds to the last active
waypoint when changes to flight plan started. The
airplane may cross waypoints while entries are being
made. When this situation occurs the pointer is advanced
along the flight plan as along as one-to-one correspondence
remains in the following waypoints.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ACTCRZ* ANTLAT* ANTLON* CLBCHNG* COSRH CRZALT
CRZCHNG* DESCHNG* DESCHNGl1* GDTIME* GSA* GUID2D* GUID3D*
GUID4D* HLD2D* LT DSPY* LT EXEC* MODCNT ORGRWY* PMODE*
POSTIME* PTR2D* RTA_INDX RTA PTR* RWYHDG RWYLAT* RWYLEN*
RWYLON* RYELEV* SAVPTR* SETGD* SINRH TST3D* TST4D*

ARRAYS
AIRPTS RTE CNT*

RECORD ARRAYS
ACT_WPTS RTE_ACT* RTE_MOD WPT_ACT WPT_MOD

FUNCTIONS AND SUBROUTINES
CLEAN_CON CREATE_BUF EXIT GET REAL HOLD SET SCOSD UPDATE POS
XLAT RTE B

-104-

MODULE NAME: HOLD_SET

FILE NAME: EXECUTE.FOR
PROCESS: SLOW

CALLED BY: EXECUTE, REJECT
CALLING SEQUENCE: CALL HOLD_SET(MODE)
PURPOSE:

To setup active holding pattern data structures.

DESCRIPTION:

This module is called upon the execution of a provisional
flight plan or the rejection of modifications to an existing
active plan. It determines if a holding pattern exists in
the active flight plan and sets up a pointer to the hold
rFIX' waypoint and also saves its name. One other action is
taken when the pattern is found, which will depend on
whether the call to HOLD SET was made from EXECUTE or
REJECT. On execute, the hold pattern database set up by
hold page software, is saved in local memory. On reject the
saved active database is restored to replace changes that
may have been made to the holding pattern.

GLOBAL REFERENCES:

VARIABLES
ACTCNT HLD PTR* HLD WPT*

ARRAYS
START

RECORD ARRAYS
WPT_ACT

FUNCTIONS AND SUBROUTINES
LIBSMOVC3

-105-

MODULE NAME: REJECT

FILE NAME: EXECUTE.FOR

PROCESS: SLOW

CALLED BY: LEGS, LEGS_TIME, ROUTE
CALLING SEQUENCE: CALL REJECT

PURPOSE:

To remove all changes to the last active flight plan.

DESCRIPTION:
This module is called when the pilot chooses to reject

the changes made to the current active flight plan. The
following information sequentially lists the steps taken
to restore the active flight plan to the MOD buffers.

Set the CDU mode to "ACT" and clear POS update waypoint
flag (if one existed).

Copy the active waypoint buffer into its MOD buffer.
Copy the active route buffer into its MOD buffer.
. Restore holding pattern parameters by calling HOLD SET.

Free unused constraint buffer locations by calling
CLEAN_CON.

Restore miscellaneous flight plan variables; airfields,
cruise alt, RTA waypoint.

Turn off EXEC and DSPLY lights.

. Expand restored route buffer to data-link text buffer
if enabled.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ACTCRZ CDU_CMD CRZALT* LT_DSPY* LT EXEC* MODCNT*
ORGRWY PMODE* POSTIME* RTA_INDX RTA PTR RTA WPT*

ARRAYS
AIRPTS* RTE_CNT*

RECORD ARRAYS
RTE_ACT RTE_MOD* WPT_ACT WPT_MOD*

FUNCTIONS AND SUBROUTINES
CLEAN_CON EXPAND RTE HOLD SET

-107-

Section 6.3 THE FLIGHT PLANNING PAGES

The CDU has numerous ways. of generating and modifying
the aircraft’s flight plan. There are seven CDU pages
dedicated to this purpose, not including the phase of
flight or initialization pages which allow cruise altitude
selection. The following sections give a brief outline
of the usage for each page followed by descriptions of the
software modules used. A detailed functional description
of the CDU clearance pages will be provided in another
document to be provided by NASA’s CDU requirements designer.

PRECEDING PAGE BLA
page__[s INTENTIONALLY BLANK NK NOT FILMED

-109-

Section 6.3.1 THE DEPARTURE/ARRIVAL PAGE

The DEPARTURE/ARRIVAL pages provide the flight crew
with departure and arrival information for the origin and
destination airports or for any other airport in the
navigation database (AADCOM). Also, these pages allow
the flight crew to insert departure and arrival route
elements into the route buffer by pressing the labeled
LSKs.

The DEPARTURE/ARRIVAL INDEX page provides access to the
DEPARTURE subpage and the ARRIVAL subpage, where specific
information about each airport is displayed. On the
DEPARTURE subpage, all SIDs and runways listed in AADCOM
for the selected airport, are diplayed. On the ARRIVAL
subpage, all STARs, approaches and runways for the selected
airport are displayed. <SEL> and <ACT> bugs are displayed
next to the route elements which are part of the current
provisional or active flight plan. Refer to figures 6.1
and 6.2 on the following pages.

N DING PAGE BLANK NOT FILMED
§308_ /00 INTENTIONALLY BLAMK PRECEDING PAY

-111-

DEP/ARR INDEX 1/1

KLFI RETURN>
KWAL ARR>

The Departure and Arrivals
Index Page

(figure 6.1)

e G PAGE BLANK NGT FILMED
PAGE_//D _ INTERTIONALLY BLAMK PRECEDING PAGE BLA

-113-

KWAL ARRIVALS 2/3

STARS APPROACHES

ML3SCL GPSILS
RUNWAYS
WF SX X 04

<D/A INDEX ROUTE>»

The Arrivals Page

(figure 6.2)

'ME_/_/.‘?_\sJNTENTIONALLY BLANK PRECEDING PAGE GLANK NGV FILMED

-115-

MODULE NAME: DA INPUT
FILE NAME: DEPARR.FOR
PROCESS: SLOW
CALLED BY: DEPARR

CALLING SEQUENCE: CALL DA_INPUT

PURPOSE::
To parse CDU data entries for the DEPARTURE or ARRIVAL

page. :

DESCRIPTION:

This subroutine is called when a data entry is detected
while on the DEPARTURE or ARRIVAL subpage. Valid entries
on this page are limited to the following:

. Requesting the DEPARR index page or ROUTE page. If there
is data on the scratch pad, it is reprogrammed back onto
the scratch pad for use by the requested page.

Display NEXT or PREVious section of currently dispalyed
page

- Insert a route element into the flight plan, by calling
MOD_ROUTE, provided that it is not already a part of the
provisional or active flight plan. This is only a valid
data entry when on the DEPARTURE page and the ORIGIN
airfield is shown or when on the ARRIVAL page and the
origin or desination airfield is shown.

. Delete a route function from the provisional or active
flight plan, by calling MOD ROUTE.

GLOBAL REFERENCES:

VARIABLES
DST ERCODE* NUMPGS ORG PASS* PGRQST* SUBPAG*

ARRAYS
ENTRY SIDLINE

FUNCTIONS AND SUBROUTINES
DEL_IN FMTOUT MOD_ ROUTE REPROG SET_SIDLINE

-116-

MODULE NAME: DEPARR

FILE NAME: DEPARR.FOR
PROCESS: SLOW

CALLED BY: CDUEXC
CALLING SEQUENCE: CALL DEPARR
PURPOSE:

To serve as the DEPARTURE/ARRIVAL page executive module.

DESCRIPTION:

This subroutine is the main procedure for the DEPARTURE/
ARRIVAL page software. It performs a few top-level functions
beginning with first pass initialization and the computation
of a few variables used by other modules. Input to the
DEPARTURE/ARRIVAL page is handled by one of two modules,

INDX INPUT or DA INPUT, depending upon which subpage of the
DEPARURE/ARRIVAL page is presently active. This procedure
also monitors the global variable PMODE so that in the event
the execute button is pressed, the subroutine SET_SIDLINE is
called to update the <SEL> and <ACT> bugs on the DEPARTURE

or ARRIVAL subpages. A call to the screen update procedure,
REFRESH DA, is made every time the CDU executive calls DEPARR,
with one exception. When a new subpage has been requested,
the update of the CDU screen is delayed for one pass to allow
time for route function information to be updated.

GLOBAL REFERENCES:

VARIABLES
PAGE PASS* PGINIT* PLAN* PMODE SUBPAG* SUBPGINIT

ARRAYS
ENTRY*

FUNCTIONS AND SUBROUTINES
DA INPUT INDX_INPUT PAGE_COUNT REFRESH DA SET_ SIDLINE

-117-

MODULE NAME: INDX INPUT
FILE NAME: DEPARR.FOR
PROCESS: SLOW
CALLED BY: DEPARR

CALLING SEQUENCE: CALL INDX INPUT

PURPOSE:
To parse CDU data entries for the DEPARTURE/ARRIVAL

INDEX page.
DESCRIPTION:

This subroutine is called when a data entry is detected
while on the DEPARTURE/ARRIVAL INDEX page. The following
list describes the requests which are valid data entries.

display DEPARTURE information for the ORIGIN airfield

display ARRIVAL information for the ORIGIN airfield, for
emergency return.

. display ARRIVAL information for the DESTINATION airfield.

display DEPARTURE or ARRIVAL information for the specified
airfield contained in AADCOM.

Upon receipt of a valid data entry, some initialization
variables are set, including the PAGE variable which is set
to reflect the page number of the requested page.

GLOBAL REFERENCES:

VARIABLES
ADDR DST* ERCODE* ORG* PAGE* SUBPGINIT*

ARRAYS
AIRPTS ENTRY

FUNCTIONS AND SUBROUTINES
DEL_IN LUARP

-118-

MODULE NAME : ITEM ADDR

FILE NAME: DEPARR.FOR

PROCESS: SLOW

CALLED BY: SET_SIDLINE

CALLING SEQUENCE: PATHADDR = ITEM ADDR (ITEM)
PURPOSE:

To return the address in AADCOM of the first SID or
the last STAR or approach in the route buffer.

DESCRIPTION:

This function searches the route buffer for the first
occurrance of a route function of type ITEM. The types
are identified by an integer value where, approach=5,
SID=6, and STAR=7. Because the route buffer may contain
more than one route function of a certain type, the
function searches the buffer, from bottom to top, for the
first SID or the last STAR or approach in the buffer. 1If
searching for a STAR or approach, the search halts when
the item is located. If searching for a SID, then the
search continues if a SID is found to ensure that it is
the first SID in the path.

GLOBAL REFERENCES:

ARRAYS
RTE_CNT

RECORD ARRAYS
RTE_MOD

-119-

MODULE NAME: ITEM_COUNT
FILE NAME: DEPARR.FOR
PROCESS: SLOW

CALLED BY: PAGE _COUNT

CALLING SEQUENCE: NUM = ITEM COUNT (ADDR, OFFST)

PURPOSE:
To determine the number of SIDs, STARs, approaches or
runways which are available at the selected airfield

DESCRIPTION:
This function searches for the end of a list of addresses

of SIDs, STARs, approaches or runways. It begins the search
at location ADDR, increments the search address by the value
contained in OFFST, and continues until it finds a zero

valued address. It returns the computed number of items in

the list.
GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GET_LONG

-120-

MODULE NAME: MODIFY

FILE NAME: MODIFY.FOR
PROCESS: SLOW

CALLED BY: RT NEW, MOD ROUTE

CALLING SEQUENCE: CALL MODIFY (ADDRESS, TYPE, CLEAR FLG)

PURPOSE:
To place airfield selection into the route buffer.

DESCRIPTION:

This subroutine is called by the Departutes/Arrivals
page of the CDU to make modifications to the flight plan.
Insertions and Deletions of SIDs, STARs, Approaches, and
runways may be requested. Note that insertions become
replacements when the inserted type already exists.

Special processing occurs when the third parameter of
the call list is set. This flag indicates the desire to
return to the departure airfield after takeoff, usually
for emergency situations. A waypoint is created at the
current aircraft position. This waypoint is created as a
10 second update waypoint (see section 1.5.3.2). The
route element selected on the DEP/ARR page is then placed
in the route buffer with a call to WAYPOINT or GROUP and
the remainder of the flight plan is deleted.

If a selected type is a route function a search of the
route buffer is made to find an existing element of the type
passed in the parameter list. If found, the element is
deleted by a call to KILL and inserted by a call to GROUP.

If a match is not found the position of insertion is
determined by the element type. An approach is always
placed as the last element in the buffer. SIDs are first
unless a takeoff runway is present, in which case they are
placed after the two runway waypoints. STARs are placed at
the end unless a touchdown runway is defined. They are
inserted two positions before the end to account for either
two runway waypoints or an approach with its entry waypoint.

Deletions of route functions are requested when the type
parameter is set to "DELETE". The actual type of the route
function is not needed to remove it from the buffer since
the passed address is used to locate the element.

Origin and destination runways have the types "RWY1l" and
"RWYZ2Z". The address parameter contains a pointer to the
navigation database when an insertion is requested. If the
address value is zero a deletion is desired.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* GS LAT LON POSTIME* TIME

-121-

ARRAYS
AIRPTS RTE_CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
DEL_RTE GROUP KILL MAKE WPT ORG_RWY REMOVE WAYPOINT

-122-

MODULE NAME: MOD_ROUTE

FILE NAME: DEPARR.FOR

PROCESS: SLOW

CALLED BY: DA INPUT

CALLING SEQUENCE: CALL MOD ROUTE (ITEMNAME, ADDIT)
PURPOSE:

To insert or delete route functions on the DEPARR
page.

DESCRIPTION:

This subroutine searches for a route function, whose
name is given by the input parameter ITEMNAME, in BULK
DATA with a call to LUSID. It then calls MODIFY with the
address and type of the route function to be inserted or
deleted from the provisional or active route buffer. The
boolean input parameter ,ADDIT, specifies whether the item
is to be inserted or deleted. Finally, this routine
calls DEMODE with a parameter of NOEXEC to create the new
waypoint buffer and allow the pilot to execute the new
path.

Note the special case where a route function has been
selected on the ARRIVAL page and the ORIGIN airfield is
shown. This indicates an emergency request to return to
the departure airfield, and some special processing
occurs. The origin airfield becomes the new destination
airfield and the origin and destination airfield flags,
which affect the informational display and input parsing
on the DEPARR page, are updated appropriately.

GLOBAL REFERENCES:

VARIABLES
ADDR DST* ORG* PAGE PASS*

ARRAYS
AIRPTS*

FUNCTIONS AND SUBROUTINES
DEMODE LURWY LUSID MODIFY SET_SIDLINE

-123-

MODULE NAME: PAGE_COUNT
FILE NAME: DEPARR.FOR
PROCESS: SLOW
CALLED BY: DEPARR

CALLING SEQUENCE: CALL PAGE_COUNT

PURPOSE:
To compute the number of subpages required to display
route function information for a selected airfield.

DESCRIPTION:

If the DEPARTURE subpage has been requested, this subroutine
compares the number of SIDs and runways available in BULK
DATA for the selected airfield and chooses the larger of the
two to determine the number of pages required for the DEPARTURE
subpage. If the ARRIVAL subpage has been requested, it
compares the number of STARs with the number of approaches and
runways and chooses the larger of the two to compute the
necessary number of subpages. One page is required to display
five lines of route functions.

GLOBAL REFERENCES:

VARIABLES
ADDR NUMAPP NUMBOTH NUMPGS* NUMSS PAGE

FUNCTIONS AND SUBROUTINES
GET_LONG ITEM COUNT

-124-

MODULE NAME: REFRESH DA

FILE NAME: DEPARR.FOR
PROCESS: SLOW

CALLED BY: DEPARR

CALLING SEQUENCE: CALL REFRESH DA
PURPOSE:

To update the CDU display for the DEPARURE/ARRIVAL pages.

DESCRIPTION:

This subroutine updates the CDU display for the DEPARTURE/
ARRIVAL INDEX page, the DEPARTURES subpage or the ARRIVALS
subpage with calls to FMTOUT. The entire screen is updated
every eight consecutive calls to this subroutine. The value
of PASS determines which particular lines are updated. During
the first call of the cycle, the appropriate page title is
output along with an indication of the current and last page
numbers,

If the DEPARTURE/ARRIVAL INDEX page is currently active,
then the name of the ORIGIN airfield is shown on line #2
along with the labels for the LSKs which provide access to
the DEPARTURE and ARRIVAL subpages. If no ORIGIN airfield
exists in the current provisional flight plan, then blanks
are displayed in place of the airfield name. Likewise, the
name of the DESTINATION airfield is displayed on line #4 along
with the label for the LSK which provides access to the
ARRIVAL page. Again, if no DESTINATION airfield is present
in the current flight plan, then blanks are diplayed in
place of the name. Lines #11 and #12 of the display contain
labels for the LSKs which provide access to the DEPARTURE and
ARRIVAL subpages for information on any airfield contained in
AADCOM.

If either the DEPARTURE or ARRIVAL subpage is currently
active then line #1 will contain headings for the lists of SIDs,
STARs, approaches or runways available at the selected airfield.
Route element information is displayed on lines #2, #4, #6, #8,
and #10. This route element information is contained in the
array, SIDLINE, which is updated by the subroutine, SET_SIDLINE.
Line #11 contains a dashed line, with the label "more" if additional
pages of information are available. Line #12 contains labels for
the LSKs which provide access to the INDEX and ROUTE pages.

GLOBAL REFERENCES:

VARIABLES
ADDR LBL NUMAPP NUMPGS PAGE PASS* SUBPAG

ARRAYS
AIRPTS DASHES SIDLINE

FUNCTIONS AND SUBROUTINES
FMTOUT

-125-

MODULE NAME: SET_SIDLINE

FILE NAME: DEPARR.FOR

PROCESS: SLOW

CALLED BY: DEPARR, DA_INPUT, MOD_ROUTE

CALLING SEQUENCE: CALL SET_STDLINE

PURPOSE:
To format lines of route element information for display

on the DEPARTURE or ARRIVAL page of the CDU.

DESCRIPTION:

This subroutine is called to update the information in
the array SIDLINE, which contains appropriate route element
information for the selected airfield. This information is
displayed by the subroutine REFRESH DA. Each element of the
array SIDLINE is a string of 24 characters and corresponds to
a display line on the CDU. The information contained in
SIDLINE is updated when either the DEPARTURE or ARRIVAL page
of the CDU is initially requested, and whenever the NEXT or
PREVious subpages of the DEPARTURE or ARRIVAL page are
requested.

If the DEPARTURE page is currently active, then the left
side of each line will contain the name of a SID and the
right side of each line will contain a runway number,
available in AADCOM for the selected airfield. If the
selected AIRFIELD is the ORIGIN airfield then <SEL> or <ACT>
bugs will be displayed next to the route elements which are
part of the current provisional or active flight plans. 1If
the current clearance mode is ACT then <ACT> bugs will be
displayed, otherwise <SEL> bugs will be displayed.

If the ARRIVAL page is currently active, the left side of
each line will contain available STARs and the right side
will contain the names of available approaches and runways
for the selected airfield. If the selected airfield is the
DESTINATION airfield then <SEL> or <ACT> bugs will be
appropriately displayed next to route elements which are
present in the current provisional or active flight plans,
again, dependent upon the current clearance mode.

Based on the value of SUBPAGE, this routine determines which
portion of the route element lists should be displayed, and
stores the appropriate names in the array SIDLINE. Also
it sets a flag which tells the subroutine REFRESH DA where
to display the header for the list of runways for a given
airfield. This is not a static position since the runway
header must follow the last approach for a selected airfield.

-126-

GLOBAL REFERENCES:

VARIABLES
ADDR DST NUMAPP NUMBOTH NUMSS ORG PAGE PLAN* PMODE

RWYLABEL* SUBPAG

ARRAYS
AIRPTS SIDLINE*

FUNCTIONS AND SUBROUTINES
GET_CHAR GET LONG ITEM_ADDR

-127-

Section 6.3.2 THE DIRECT/INTERCEPT PAGE

This page is a variation of the LEGS page. The CDU
display is the same except for "Direct To" and "Intercept
Leg" prompts on the bottom. Section 6.3.4 describes the
standard LEGS page and should be referenced to understand
the DIR/INTC page. This section describes the three modules
unique to the DIR/INTC page which are on the file INTC.FOR
(Refer to figure 6.3 on the following page).

Two operations are performed on this page besides the
standard LEGS page functions. The first option creates a
waypoint at the airplanes present position and connects it
to the selected "To" waypoint. If the chosen waypoint is
part of the current flight plan the remaining waypoints
along the path are kept. The second option, like the first,
requires a "To" waypoint entry. Once selected the CDU
screen is updated to prompt for an inbound bearing. A new
waypoint is generated 100 nautical miles away from the
selected waypoint to define a leg with the desired inbound
bearing. Remaining flight plan waypoints are kept for
this operation also.

Note that the pilot defined waypoint created at the
aircraft position is updated every ten seconds to the
current aircraft position until the flight plan is made
active.

-129-

ACT RTE 1/1

1 32°

190/ 4000

L TURN
WFBBC 150/ 4000

353°
WFBBD 130/ 4000

353°
WFBBE 150/ 2723

INTC LEG-

To HRERN

The Direct/Intercept Page

(figure 6.3)

NG PAGE 8. NOT Fi
PAGE/ 3 mrenmionay BLANK PRECEDING PAGE BLANK NOT FILMED

-131-

MODULE NAME: DIRECT
FILE NAME: INTC.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL DIRECT

PURPOSE:
To create a "Direct To" flight plan.

DESCRIPTION:

This subroutine is called when either a "Direct To" or
"Intercept Leg" entry is made on the DIR/INTC page of the
CDU. The selected waypoint’s name is in the global CDU
entry buffer (ENTRY). Two valid situations may occur. If
the entered waypoint is found on the current flight plan,
all waypoints before the chosen one are removed from the
route buffer and the current aircraft position is inserted
as the "From" waypoint. When the waypoint is not entered
on the current flight plan a two waypoint path is generated
consisting of the current position and the selected waypoint.

A "Direct To" may not be performed to a holding pattern
waypoint. If attempted an error condition is flagged. The
function MAKE_WPT is called to create the waypoint at the
aircraft position. The new waypoint is assigned the current
altitude and ground speed of the aircraft. The "From"
format of the standard legs page is requested once complete.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* FROMPG* GS LAT LON MODCNT PGRQST* PMODE
POSTIME* PTR2D TIME

ARRAYS
AIRPTS ENTRY RTE CNT*

RECORD ARRAYS
RTE_MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
BREAK MAKE WPT OPEN PAD_NAME TRIM WPTS WPT ID

eaee /30 ivEnTionaLLY BuAK PRECEDING PAGE 8LANX NGT FILMED

-132-

MODULE NAME: INTC_MGR
FILE NAME: INTC.FOR
PROCESS: SLOW
CALLED BY: CDUEXC
CALLING SEQUENCE: CALL INTC_MGR
PURPOSE:
To call the LEGS executive requesting the DIR/INTC
variation.
DESCRIPTION:

The only thing done by this module is to call LEGS
with the DIR/INTC parameter.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
LEGS

-133-

MODULE NAME: INTERCEPT
FILE NAME: INTC.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL INTERCEPT

PURPOSE:
To create an "Intercept Leg" waypoint.

DESCRIPTION:

This subroutine is called when the final entry is made
on an "Intercept Leg" creation. The inbound bearing is
decoded from the CDU entry line and used to create a pilot
defined waypoint 100 nautical miles from the previously
selected "To" waypoint. The last "From" waypoint, generated
by DIRECT after the "To" waypoint selection, is replaced
by the new waypoint to form the desired inbound path legqg.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* FROMPG* GS PGRQST*

ARRAYS
ENTRY

RECORD ARRAYS
RTE_MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
FLTVAL MAG VAR MAKE_WPT NEW POS

-135-

Section 6.3.3 THE HOLD PAGE

The HOLD page is used by the flight crew to create a
holding pattern at the present airplane position or at any
waypoint contained in the waypoint buffer (except DME turn
waypoints). When the HOLD key of the CDU is pressed, a
special variation of the LEGS page format, the LEGS-HOLD
page, is displayed. 1If a holding fix is selected, a
variable HLD WPT is assigned the name of the holding fix
and a holding pattern is set up with default parameters,
by calling HOLD_INIT. The holding pattern is inserted into
the provisional route buffer as well as the waypoint buffer
and the HOLD page format is displayed on the CDU. The HOLD
page allows the flight crew to modify the default
parameters of the holding pattern and execute the new
programmed route. Holding pattern parameters which may be
modified include the direction of turns in the holding
pattern, the holding speed and the bearing to the holding
fix. The flight crew may also specify the time required to
fly a straight leg of the holding pattern or the length of a
straight leg in nautical miles (Refer to figure 6.4 and
6.5 on the following pages).

When a holding pattern is created, four points which
comprise the holding pattern are defined and inserted into
the provisional waypoint buffer. The names of the
waypoints which make up the holding pattern are HOLD1,
HOLD2, HOLD3 and HOLD4. These waypoints are inserted into
the path just prior to the position of the holding fix.

The holding fix and the waypoint HOLD1 have the same
latitude, longitude and altitude (if one exists for the
fix) and are combined with the other hold waypoints to
form a path section.

When the autopilot is engaged flying a holding pattern,
the airplane repeatedly flys the holding pattern until a
request is made to exit. Each time the airplane passes
waypoint HOLD4, a check is made in HVGUID to see if a
request has been made to exit the holding pattern,
indicated by EXHOLD. If no request has been made to exit
the holding pattern, the active "to" waypoint pointer is
set back to point to HOLD1l. Otherwise, the holding fix
becomes the active "to" waypoint.

It is possible to create a holding pattern in the
provisional flight plan which differs from the holding
pattern in the active flight plan. Additional bookkeepng
is performed to provide this capability.

: CEDING PLGE B! ANK NOT [ILME
eAGE_/3Y INTENTIGNALLY BLANK PRECEDING PAGE BLANK NOT FILMED

-137-

ACT RTE 1/1

132°

WFBBB 190/ 4000

L TURN

WFBBC 150/ 4000 |
353°

WFBBD 150/ 4000
353
150/ 2723

The Legs Hold Page

(figure 6.4)

PRECEDING PAGE BLANX NGT FILMED
’m_[:gk’ INTENTIONALLY BLAMK

-139-

ACT RTE HOLD 1/1

TGT SPD
210KT

X ETA
1445:00

EXIT TIME

F

<ERASE EXIT HOLD>

The Hold Page

(figure 6.5)

PAGE 258 ANTLRTIUNALLY BLAMK
PRECEDING PAGE BLANK NOT FILMED

-141-~

MODULE NAME: GET_ETA

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: HOLD_INPUT, REFRESH HOLD

CALLING SEQUENCE: ETA = GET_ETA

PURPOSE:
To compute the estimated time of arrival (ETA) at the

holding fix.

DESCRIPTION:

This routine computes the ETA at the selected holding
fix. It accumulates the distance to the holding fix by
adding the distance to the next waypoint, DTOGO, to the
distances along each of the legs of the path which lie
between the airplane and the holding fix. It divides
the accumulated sum by the current ground speed in feet
per second and adds the result to the current time. The
ETA is computed and displayed only when the current
clearance mode is ACT, the airplane position is within
the holding pattern and ground speed is greater than zero.

GLOBAL REFERENCES:

VARIABLES
DTOGO GS HLD PTR PMODE TIME TOWPT

RECORD ARRAYS
WPT ACT

PRECEDING PAGE BLANK NGT FILMED

PAGE_/%) INTENTIONALLY BLomy

~142-

MODULE NAME: HOLD_ INIT

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: HLD 1IN

CALLING SEQUENCE: CALL HLD INIT (INDEX)
PURPOSE:

To create an initial holding pattern with default
parameters.

DESCRIPTION:

This routine is called from the LEGS-HOLD page when a
holding fix is selected. The input parameter is an index
into the waypoint buffer de31gnat1ng the position of the
holding fix. When this routine is called some flags are
initialized and a holding pattern is created with the
following defaults:

- holding pattern turns are right turns
- inbound course to fix is path bearing at fix waypoint
- hold speed is 210 kts
- if fix altitude is greater than 14000 feet, the
default leg time is 1.5 minutes, otherwise it is 1 minute

This routine calls the the LENGTHS routine to compute the
radius of the holding pattern turns, HLDRAD, and the lengths
of the straight legs of the holding pattern, LEG_LEN. It
calls POINTS to compute the positions of the four waypoints
which define the holding pattern and stores the necessary
values in HLDBUF.

GLOBAL REFERENCES:

VARIABLES
DELHOLD* EXHOLD* HLD_WPT* MODCNT PGINIT*

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
ANGL LENGTHS MTHS$SSIGN POINTS

-143-

MODULE NAME: HOLD INPUT
FILE NAME: HOLD.FOR
PROCESS: SLOW
CALLED BY: HLDWPT

CALLING SEQUENCE: CALL HOLD INPUT (I)

PURPOSE:
To parse CDU data entries for the main HOLD page.

DESCRIPTION:

This subroutine is called when a data entry is detected
while on the HOLD page. Valid entries on this page are
limited to the following:

Deleting the holding pattern from the provisional or
active flight plan.

Echoing the ETA into the scratch pad.
Toggling the turn direction of the holding pattern.
Requesting exit of holding pattern.

Entering a new holding pattern speed, leg length or
leg time.

Cancelling the deletion of or exit from a holding pattern.

Note that once a holding pattern has been executed and flown,
the holding pattern remains on the MAP display, even after it
has been exited. If the HOLD page of the CDU is requested,
the holding pattern information is displayed and the message
"EXIT HOLD PATTERN ARMED" remains on line #12 of the CDU. To
enable removal of the holding pattern from the flight plan
and MAP display, after the holding pattern has been exited,
special input processing has been implemented. The word
"DELETE" may be entered using LSK-L6 or LSK-R6. This displays
the ERASE label for LSK-L6 and therefore allows the holding
pattern to be erased. This required special processing in the
flight plan modification code since "dead" waypoints cannot

be deleted under normal conditions.

~-144-

GLOBAL REFERENCES:

VARIABLES
DELHOLD* ERCODE* EXHOLD* HLDZD* LT EXEC* PMODE PTR2D

TIMED_LEG

ARRAYS
ENTRY

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
ANGL DEL_IN DEMODE FLTVAL FMTOUT FMTTIM GET_ETA KILL
LENGTHS MTHS$SIGN POINTS -

-145-

MODULE NAME: HLD_MGR
FILE NAME: HOLD.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL HLD MGR

PURPOSE:
To call the appropriate HOLD page module.

DESCRIPTION:

This routine determines which HOLD page format should be
displayed and calls the appropriate executive module. The
HOLD page format is displayed only if the variable HLD WPT
contains the name of a fix waypoint, otherwise the LEGS-HOLD
page is displayed. When the HOLD format is required, the
routine HLDWPT is called with the index of the holding fix.
When the LEGS page is required, LEGS is called with a
parameter of 2 to indicate that the HOLD variation of the
LEGS format is to be displayed.

GLOBAL REFERENCES:

VARIABLES
HLD_WPT

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
HLDWPT INDX LEGS

~-146-

MODULE NAME: HLDWPT
FILE NAME: HOLD.FOR
PROCESS: SLOW
CALLED BY: HLD MGR

CALLING SEQUENCE: CALL HLD MGR (INDEX)

PURPOSE:
To serve as the HOLD page executive module

DESCRIPTION:

This subroutine is the main procedure for the HOLD page
software. It performs a few top-level functions including
first pass initialization. The input parameter is an index
into the waypoint buffer designating the position of the
holding fix. Input to the HOLD page is handled by the
module HOLD INPUT. A call to the screen update module,
REFRESH_HOLD, is made every time the HOLD page executive
module, HLDWPT, is called.

GLOBAL REFERENCES:

VARIABLES
PASS* PGINIT¥*

ARRAYS
ENTRY *

FUNCTIONS AND SUBROUTINES
HOLD INPUT REFRESH_HOLD

MODULE NAME: INDX

FILE NAME: HOLD.FOR
PROCESS: SLOW

CALLED BY: HLD MGR, LENGTHS

CALLING SEQUENCE: I = INDX (NAME)

PURPOSE:
To locate the holding fix in the waypoint buffer.

DESCRIPTION:

This function is called with the five character name
of the holding fix waypoint. The waypoint buffer is
searched and the index into the structure is returned.
A zero index is returned when the fix waypoint is not
found in the waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
MODCNT

RECORD ARRAYS
WPT_MOD

-147-

-148-

MODULE NAME: LENGTHS

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: HOLD INIT, HOLD INPUT

CALLING SEQUENCE: CALL LENGTHS (TIME, SPD, LEN, RAD)

PURPOSE:
To compute the radius of the turns and the lengths of

the straight legs of the holding patteérn.

DESCRIPTION:
This routine is called on creation of a holding pattern

or when leg time or holding speed are modified by crew
inputs to the CDU HOLD page. The input parameters are the
desired time, in minutes, to fly one straight leg of the
holding pattern and the requested speed in knots. The
length for the straight legs of the holding pattern as well
as a new turn radius for the holding pattern are computed
using the following equations:

i

speed in feet per second * time in seconds
2
(true airspeed + wind speed) /
(gravitational acceleration * tan (nominal bank angle))
GLORAL REFERENCES:

length

radius

VARIABLES
HLD_WPT

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
INDX

~149-

MODULE NAME: POINTS

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: HOLD_INIT, HOLD_ INPUT

CALLING SEQUENCE: CALL POINTS(I, RAD, LEGLEN, INCRS, SPD)
PURPOSE:

To create the four waypoints which define a holding
pattern.

DESCRIPTION:

This routine computes the positions of the four waypoints
which define a holding pattern at the selected holding fix.
The input parameters are as follows:

I - an index into the waypoint buffer designating the
position of the holding fix

RAD - the holding pattern turn radius in feet

LEGLEN - the length in feet of one of the holding pattern
straight legs

INCRS - the bearing of the path segment preceeding the
holding fix

SPD - the desired speed for the holding pattern (knots)

For each waypoint, the latitude and longitude are computed
with a call to PROJPOINT. Along with latitude and longitude,
the altitude, speed, turn radius, and associated navaid must
be stored in HLDBUF for use by the path definition modules.
The speed and turn radius are determined by the values of the
input parameters RAD and SPD. The associated navaid is the
the same as that of the holding fix. If the altitude flag in
the waypoint buffer is set for the holding fix, then the
altitude of the hold waypoints are set equal to the altitude
of the holding fix, otherwise the default altitude of 15,000
feet is used. Also, note that the holding pattern turns are
defined as DME turns. The latitude and longitude define the
turn center, and therefore the bearing from the turn center to
the inbound waypoint must be stored, and the altitude must be
negated to indicate that they are inbound waypoints. For the
outbound waypoints, the turn angle must be stored. (see
AADCOM format description for SID/STAR Route functions)

GLOBAL REFERENCES:

RECORD ARRAYS
HLDPTN* HLDPTS* WPT MOD

FUNCTIONS AND SUBROUTINES
ANGL LOCAL_ERAD MTH$SIGN PROJPOINT SCOSD

-150-

MODULE NAME: PROJPOINT

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: POINTS

CALLING SEQUENCE: CALL PROJPOINT(PT1, BRG, DIST, PT2)
PURPOSE:

To compute a waypoint latitude and longitude.

DESCRIPTION:

This routine computes the latitude and longitude of a
waypoint given a reference waypoint and a bearing and
distance from that point. It uses LATFT and LONFT which
are created by LOCAL ERAD. The PTS structure is used so
that the computed latitudes and longitudes can be stored
directly into HLDBUF.

GLOBAL REFERENCES:

VARIABLES
LATFT LONFT

FUNCTIONS AND SUBROUTINES
SCOSD

-151-

MODULE NAME: REFRESH HOLD
FILE NAME: HOLD.FOR
PROCESS: SLOW

CALLED BY: HLDWPT

CALLING SEQUENCE: CALL REFRESH HOLD (I)

PURPOSE:
To update the CDU display for the HOLD page.

DESCRIPTION:

This subroutine updates the CDU display for the HOLD page
with calls to FMTOUT. The entire screen is updated every
fourteen consecutive calls to this subroutine. The value of
PASS determines which particular lines are updated. During
the first call of the cycle, the page title is output along
with an indication of the current and last page numbers.
Information about the holding pattern is displayed on lines
#1 through #10. This information includes:

the name of the holding fix

the direction of holding pattern turns

the target speed for the holding pattern

the holding pattern leg time and leg distance

the bearing of the leg which aproaches the holding fix
the estimated time of arrival at the holding fix

the desired holding pattern exit time

The LSK labels which are displayed on line #12 depend upon
current clearance mode. If the current clearance mode is
original or MOD then an ERASE label is displayed on the left
side of this line, if the current clearance mode is ACT then
initially the ERASE label is displayed on the left and EXIT
HOLD is displayed on the right side of this line. 1If the
LSK labelled EXIT HOLD has been pressed then the message,
"EXIT HOLD PATTERN ARMED", will be displayed on line #12,
and if the LSK labelled ERASE has been pressed when the
current clearance mode is ACT then the message, "DELETE
HOLDING PATTERN" will be displayed on line #12.

GLOBAL REFERENCES:

VARIABLES
DELHOLD EXHOLD HLD WPT PASS* PMODE

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
ANGL FMTOUT FMTTIM FSTRNG GET ETA MTHS$SIGN TITLE

-153-

Section 6.3.4 THE LEGS PAGE

The LEGS page of the CDU allows the entry, manipu-
lation, and application of constraints to flight plan
waypoints. Four separate CDU pages actually use the
LEGS page format. The various pages are listed below
along with CDU access information.

LEGS -~ The standard legs page which is accessed by
using the LEGS key or selecting the "<LEGS" option on

the ROUTE INDEX page.

DIRECT/INTERCEPT - This page uses the LEGS format except
for the addition of the box prompts displayed on the
bottom which allow the entry of the destination waypoint,
Once the waypoint is selected this page automatically
transfers to the standard legs page. The DIR/INTC key
is the only access to this page.

HOLD - This page uses the LEGS format only until the hold
waypoint is selected, at which time the hold page uses
its unique page format. The only deviation from the
standard legs page is the box prompts provided for
hold waypoint entry.

FROM WAYPOINT - This page is accessed by selecting the
"<FROM WPT" prompt on the ROUTE INDEX page. This page
differs from the standard legs page in that only the
first waypoint shown. The active LEGS page starts with
the "To" waypoint while the FROM page uses the “From"
waypoint. The modified (MOD) LEGS page starts with
the second flight plan waypoint while the FROM page
uses the first. Both pages are identical in the
initial clearance mode (start with #1) .

Note that any LEGS page operations may be performed while
on the other variations of the LEGS page. Refer to figure
6.6 for a picture of the standard LEGS page.

Individual waypoints may be entered and deleted on the
LEGS page. The altitude, ground speed, and turn radius
constraints associated with the waypoint may also be
entered. As many "sub-pages" as necessary are maintained
to cover the entire flight plan. The current and last
page numbers are shown on the LEGS title line. For a
detailed functional description of the LEGS page refer
to the CDU requirements produced by Charlie Knox of NASA.
The remaining pages of the section explain the 25 modules
associated with the LEGS page. Other sections of this
document must be referenced for information about the
variations of the standard LEGS page.

PAGE_ /S mremmonanyy g - PRECEDING PAGE BLANK NGT FILMED

-155~

ACT RTE LEGS

132° 1T NM

FBBB

L TURN

WFBBC
353°

WFBBD
353°

<INDEX

The Legs Page

(figure 6.6)

FARCERRNG R0 e p AN NGT RO MET,

PACE /5 INTENTIONALLY BLAMK

~157-

MODULE NAME: ADD WPT
FILE NAME: LEGS.FOR

PROCESS : SLOW

CALLED BY: HLD_POS, WPT DATA
CALLING SEQUENCE: CALL ADD WPT (INDEX)
PURPOSE:

To insert a waypoint into the flight plan.

DESCRIPTION:

This procedure adds a waypoint to the flight plan by
creating a waypoint in the route buffer. Three cases must
be accounted for. The waypoint may be appended to the end
of the route buffer, inserted at a route dicontinuity, or
inserted between flight plan waypoints. When inserted
between waypoints that are part of a route function, the
route function must be split into separate parts. This
procedure is also used to update the active "To" waypoint.
When a waypoint which appears further along in the flight
plan is entered at the current "To" waypoint, which is
highlighted in reverse video, the flight plan updated to
reflect the new destination waypoint. All waypoints behind
the new "From" waypoint are removed from the flight plan,
which must be manually activated to become the new active
flight plan.

The subroutine WAYPOINT is called to actually perform
the waypoint insertion. Checks are made prior to calling
WAYPOINT to identify the situations mentioned above. When
the waypoint is inserted within an existing route function
the procedure SPLIT is called to break the route function
at the selected waypoint. The insertion is then made
between the two new route function pieces.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ERCODE* MODCNT PMODE TOWPT

ARRAYS
AIRPTS ENTRY RTE CNT

RECORD ARRAYS
RTE_MOD WPT_ACT WPT MOD

FUNCTIONS AND SUBROUTINES
BOUNDS PAD_NAME RTE WPT SPLIT TRIM

| WPTS WAYPOINT WPT ADDR
WPT ID

h“*.l:@ém! PRECEDING RAGE B' AMNY NGT IUMED

NTENTIONALLY BLANK

-158-

MODULE NAME: ALTX

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: FLT TYPE INP, LINK EA, NMBRS, PFINP

CALLING SEQUENCE: ALT = ALTX(TEXT, COUNT)

PURPOQOSE:
To decode altitude entries.

DESCRIPTION:

This function evaluates an ASCII numeric string which
represents an altitude. Note that values entered with
three or less digits are assumed to be flight levels. Any
value greater than 18,000 feet must not have non-zero tens
or ones digits since it will be displayed as a flight level.
The CDU error code value may be set to reflect an "OUT OF
RANGE" or "BAD FORMAT" error. Out of range errors ocuur
when the value is not between 0 and 40,000 feet.

GLOBAL REFERENCES:

VARIABLES
ERCODE

FUNCTIONS AND SUBROUTINES
FLTVAL

~159-

MODULE NAME: BOUNDS

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: ADD_PLAN, ADD WPT, HLD IN, KILL WPT,

LINK_PD, MERGE, NEXT_WPT, TRIM WPTS, RTE
CALLING SEQUENCE: CALL BOUNDS (INDEX, IN_OFS,OUT_OFS, STEP)

PURPOSE:
To find entry/exit waypoint offsets.

DESCRIPTION:

This subroutine is called to compute the byte offsets, from
the start of a route function defined in the route buffer, of
the entry and exit waypoint pointers (see section 1.5.1.1 for
database formats). When one of the waypoints is not defined
a zero is returned as its offset. The number of bytes between
consecutive waypoints in the route function is also returned.
Note that the STEP may be a negative value since airways may
be flown in either direction.

The parameter list for BOUNDS consists of one input and
three output values. The first is the index into the route
buffer of the chosen route function. The output parameters
are the entry waypoint offset, exit waypoint offset, and
waypoint separation respectively.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
ENTRY WPT

MODULE NAME: DSP_WPTS
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL DSP_WPTS (PAGE_1ID)

PURPOSE:
To create CDU display data for the LEGS page.

DESCRIPTION:

This subroutine is called to update the CDU display
screen with the information pertinent to the "LEGS" page
of the CDU. The entire screen is updated every six
consecutive calls to this procedure. During the first call
of the cycle the title line and fixed labels are generated.
On subsequent calls the waypoint information for one of the
five available slots on the screen is updated.

Waypoint information is shown on CDU line pairs starting
with #2/#3 and ending with #10/#11. Three different things
can occupy a line pair. The lines are blanked when finished
with waypoint buffer elements. A route discontinuity marker
is shown for positions which correspond to a break in the
flight plan. Lines that show waypoint data have the way-
point name, speed, altitude, inbound bearing, and inbound
leg distance. Other information appears with the waypoint
data at certain times. The "<CTR>" bug is shown on the
map center waypoint during Plan mode. The waypoint radius
override symbol "R" is placed on waypoints which have a
manually entered turn radius. The waypoints which were
assigned a zero turn radius because of bad flight plan
geometery are indicated by the "*" symbol. When the
displayed waypoint is the "To" waypoint of the active
flight plan the name is shown in reverse video and the
inbound distance is from the airplane, not the previous
waypoint.

Note that the altitude and speed fields may be dashed
when their respective constraints are undefined. When
shown, the values may be either small or large font
depending on the constraint type. The description for
the module XLAT RTE discusses constraint types.

-161-

GLOBAL REFERENCES:

VARIABLES
CTR DTOGO FIRST PTR LASTPG MODCNT PAGE PASS* PLANM PMODE

TOWPT

ARRAYS
BOXES

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUT FSTRNG HLD END INBOUND INTC_END LEG _END STEPS TITLE

-162-

MODULE NAME:

FILE NAME:
PROCESS:

CALLED BY:
CALLING SEQUENCE:

PURPOSE:

HLD_END
LEGS.FOR
SLOW
DSP_WPTS
CALL HLD_END

To create CDU display labels for the LEGS page.

DESCRIPTION:

This procedure updates CDU display lines #11 and $12
for the HOLD variation of the LEGS page. The "HOLD AT"
query is placed on line #11. Line #12 contains the
box prompts and "PPOS>" response which may be selected
using either LSK-L6 or LSK-R6.

GLOBAL REFERENCES:

ARRAYS
BOXES

FUNCTIONS AND SUBROUTINES

FMTOUT

-163-

MODULE NAME: HLD 1IN

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: HLD_POS, WPT DATA
CALLING SEQUENCE: CALL HLD_IN(WPT INDEX)
PURPOSE:

To initiate the processing of a selected hold waypoint.

DESCRIPTION:

This procedure is called when a holding pattern is
requested on the LEGS-HOLD page. The input parameter is an
index into the waypoint buffer designating the selected way-
point. If the parameter is zero the waypoint buffer is
searched for the name stored on the global CDU entry line,
ENTRY. The procedure HOLD INIT is called to create the
holding pattern waypoints in HLDBUF. If the hold waypoint
is part of a route function the route function waypoints
are separated into two pieces by calling the procedure
SPLIT. The holding pattern, which consists of an entry
waypoint and a hold route function, is inserted before the
hold waypoint in the route buffer. The last step is to
automatically signal the CDU executive to perform a page
change to the hold page display.

GLOBAL REFERENCES:

VARIABLES
ERCODE* HLD WPT* MODCNT PGRQST* START

RECORD ARRAYS
RTE_MOD* WPT MOD

FUNCTIONS AND SUBROUTINES
BOUNDS HOLD INIT OPEN PAD NAME RTE WPT SPLIT WPT ADDR

-164-

MODULE NAME: HLD_POS
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL HLD_ POS

PURPOSE: |
To create a holding pattern at present position.

DESCRIPTION:

This subroutine inserts a holding pattern about the
airplane’s present position on the flight plan. A "PPOS"
entry is simulated to create the "hold waypoint" in the
route buffer by calling ADD WPT. The route discontinuity
generated from the call is removed and aircraft altitude
and ground speed are set up as constraints. A new waypoint
buffer is created by calling XLAT RTE which is used when
HLD IN is called to create the holding pattern at the new
PPOS waypoint.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* GS PMODE STRING* TOWPT

ARRAYS
CONBUF* ENTRY*

RECORD ARRAYS
RTE _MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
ADD WPT DEMODE FIND EMPTY HLD_IN KILL XLAT_RTE

-165-

MODULE NAME: INBOUND

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: DSP_WPTS

CALLING SEQUENCE: CALL INBOUND (WPT INDEX, BRG_ TEXT)
PURPOSE:

To generate bearing text for LEGS display.

DESCRIPTION:

This subroutine creates ASCII text for display in the
inbound bearing field of the LEGS page. The created
character string will have "TURN" for outbound DMA way-
points. Other type will have a number, up to three digits,
with a degree symbol. Note that the bearing saved in the
waypoint buffer for DMA inbound waypoints is perpendicular
to the actual inbound bearing.

GLOBAL REFERENCES:

RECORD ARRAYS
WPT_ MOD

FUNCTIONS AND SUBROUTINES
ANGL FSTRNG MTHS$SIGN

-166-

MODULE NAME: INTC_END

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: DSP_WPTS
CALLING SEQUENCE: CALL INTC END
PURPOSE:

To create CDU display labels for the LEGS page.

DESCRIPTION:

This procedure updates lines #11 and #12 of the CDU
display screen when the DIR/INTC version of the LEGS
page is shown. Two distinct formats are used for this
page depending on the status of the global flag INTCF.
This happens because the DIR/INTC page requires a user
response after the initial DIR/INTC selection. The
normal display shows the "direct to" and "intercept leg"
prompts. When the intercept leg choice is selected
the lines are updated with the intercept course prompt.

GLOBAL REFERENCES:

VARIABLES
INTCF

ARRAYS
BOXES DASHES

FUNCTIONS AND SUBROUTINES
FMTOUT

-167-

MODULE NAME: KILL WPT

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: WPT DATA

CALLING SEQUENCE: CALL KILL_WPT (WPT_ INDEX)
PURPOSE:

To remove a waypoint from the flight plan.

DESCRIPTION:

This subroutine removes a waypoint from the flight plan
by modifying the route buffer. When the waypoint is not
part of a route function it is simply replaced by a route
discontinuity marker. Otherwise the route function which
contains the waypoint must be split into two pieces that
contain the preceeding and following waypoints.

In the case of the route buffer element being a single
waypoint a test is made on the following route buffer
element. If it is a route function the deleted waypoint was
its entry waypoint. The module NEXT WPT is called to make
the next route function waypoint in sequence the new entry
waypoint. The same tests are made when the exit waypoint of
a route function is deleted. The waypoint may have also
served as the entry waypoint of a following route function
in which case the NEXT WPT call is required. When the exit
waypoint is deleted the previous waypoint on the flight plan
is used as the new exit, unless it has an undefined entry
waypoint. A route function with an undefined entry gene-
rates a single waypoint in the waypoint buffer (the exit),
so the exit deletion creates a null route function (undefined
entry and exit). If the route function has been reduced to a
one waypoint route function, having the same entry and exit
points, the route function is deleted and the entry waypoint
remains followed by a route discontinuity. All other cases
of removing a route function waypoint are handled by the
procedure SPLIT.

GLOBAL REFERENCES:

VARJABLES
ERCODE* MODCNT

ARRAYS
RTE CNT

RECORD ARRAYS
RTE_MOD* WPT MOD

FUNCTIONS AND SUBROUTINES
BOUNDS BREAK NEXT WPT OPEN RTE_WPT SPLIT WPT ADDR

-168-

MODULE NAME: LEGS

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: HLD MGR, INTC_MGR, LEG_MGR
CALLING SEQUENCE: CALL LEGS (PAGE_1ID)
PURPOSE:

To serve as the LEGS page executive module.

DESCRIPTION:

This procedure is called from the various LEGS format
managers to handle function and data entries, and generate
the data for the CDU LEGS page display. The one input
parameter identifies the calling manager module, which is
used to select the minor variations in the LEGS page format.

The first time the LEGS page is called after a change
from another page format, some initialization is performed.
The LEGS subpage is set to one unless returning from the
LEGS-TIME page. In that case the subpage remains the same
as it was on the LEGS-TIME page. Other LEGS variables are
set to their default values.

A number of independent operations are performed in the
body of the procedure. The following is a sequential list
describing the functions.

If the CDU clearance mode has changed to active, change
from "FROM" format to standard.

Call SET PG to set up LEGS page parameters.

Determine if the Plan Mode LEGS format is to be used. In
this mode the navigation display format is centered at

the waypoint marked with the "<CTR>" bug on the CDU. This
format of the LEGS page is only shown when the NAV display
is in Plan mode and the standard LEGS page is being used.
Note that on the first pass of Plan mode the "<CTR>" bug
is set to the last selected map center waypoint (see the
module description for CDUFST).

Respond to the following function entries.
Advance/Backup to next subpage.
Advance/Backup "<CTR>" bug (Plan mode only).
Calls NEWCTR.
Change to ROUTE INDEX page (Standard LEGS only).
Hold at PPOS (HOLD page only). Calls HLD POS.
Reject modified flight plan (standard LEGS only).
Echo waypoint name to scratch pad. Calls WPNAME.
Echo ALT/SPD constraints to scratch pad. Calls
PROG_NUM.

Respond to data entries by calling WPT_DATA.

Update display lines by calling DSP_WPTS.

-169-

GLOBAL REFERENCES:

VARIABLES
CTR* DISPST ERCODE* FROMPG* INTCF* LASTPG LATCEN LONCEN
MODCNT PAGE* PASS* PGINIT* PGRQST* PLANM PMODE

ARRAYS
ENTRY* OLDPAGE

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
DSP_WPTS HLD POS NEWCTR PROG_NUM REJECT SET PG WPNAME
WPT DATA -

-170-

MODULE NAME: LEG_END

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: DSP_WPTS
CALLING SEQUENCE: CALL LEG END
PURPOSE:

To create CDU display labels for the LEGS page.

DESCRIPTION:

This subroutine is called to update lines #11 and #12
of the CDU display screen when in the standard LEGS format.
The reference time of arrival and RTA waypoint name are
shown in the middle of lines #11 and #12 when defined. The
prompts "<INDEX" and "ERASE>" are placed on the outside of
line #12 to identify the use of LSK-L6 and LSK-R6. The
erase prompt is only shown during the MOD CDU clearance
mode.

GLOBAL REFERENCES:

VARIABLES
PMODE RTA INDX RTA TM

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUT FMTTIM

-171~

MODULE NAME: LEG_MGR

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: CDUEXC
CALLING SEQUENCE: CALL LEG MGR
PURPOSE:

To call the LEGS page module with standard format.

DESCRIPTION:

Since the standard legs format is used by several pages
the main LEGS procedure must be called with a parameter
indicating specific format. When the executive wishes to
activate the standard legs format it calls the procedure
LEG MGR which in turn calls LEGS with a parameter value
of "1".

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
LEGS

~-172-

MODULE NAME: NEWCTR

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: LEGS

CALLING SEQUENCE: CALL NEWCTR (STEP)
PURPOSE:

To move the "<CTR>" bug on the LEGS page.

DESCRIPTION:

The "<CTR>" bug is moved STEP increments on the display.
Note that STEP may be negative to "step back" or zero to
force the page computation mentioned below. The bug will
wrap around the ends of the flight plan. Also another
STEP is performed when the new placement is on a route
discontinuity. The navigation display format map center
variables are set to the position of the new "<CTR>" way-
point. The last action is the computation of the CDU
LEGS page which contains the "<CTR>" waypoint. This is
performed because the bug may be STEPed off the current
page.

GLOBAL REFERENCES:

VARIABLES
CTR FIRST PTR GDTIME* LATCEN* LONCEN* MODCNT PAGE*

RECORD ARRAYS
WPT_MOD

~173-

MODULE NAME: NEW_ENTRY

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: NEXT WPT, SPLIT, TRIM WPTS

CALLING SEQUENCE: CALL NEW_ENTRY (RTE PTR, WPT ADR,
RTE_OFF, EXIT OFF)

PURPOSE:

To define a new route function entry waypoint.

DESCRIPTION:

This module sets up a new route function entry waypoint.
The route buffer index for the new entry waypoint is passed
as RTE PTR. The waypoint’s database address and route
offset are also provided from the parameter list. The
last paramter in the list is the offset of the exit way-
point.

A check is made to determine if the new route entry
waypoint is the same as the route exit waypoint. If so,
the route function is removed to leave the entry waypoint
only. Any waypoint constraints (ALT/SPD/RAD) are extracted
from the constraint buffer and assigned to the new waypoint.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD*

FUNCTIONS AND SUBROUTINES
KILL TYPE _WPT XFER CON

-174-

MODULE NAME: NEXT_ WPT

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: KILL WPT

CALLING SEQUENCE: CALL NEXT WPT (INDEX)
PURPOSE:

To modify a route function when its entry waypoint is
deleted.

DESCRIPTION:

When the entry waypoint of a route function is deleted
a route discontinuity is inserted before the route function
and a new entry waypoint is selected. The new entry is
set up by a call to NEW ENTRY.

When the route function does not have an exit waypoint
defined, its definition only creates one waypoint, the entry,
in the waypoint buffer. When the entry waypoint is deleted
the route function is null, having neither an entry nor an
exit waypoint.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
BOUNDS BREAK GET LONG KILL NEW_ENTRY OPEN

-175-

MODULE NAME: NMBRS

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: LEGS

CALLING SEQUENCE: CALL NMBRS (WPT INDEX)
PURPOSE:

To decode constraint data entries for the CDU LEGS page.

DESCRIPTION:

This module is called to decode the numeric constraint
value input for the waypoint indicated by the input
parameter WPT INDEX.

The data may be either speed, altitude, or turn radius
information. Speed and altitude values may be entered on
any display line containing a waypoint name. Turn radius
values may only be assigned to waypoints not used in DMa
turns. The five valid entry formats are shown below. The
"nnn" depicts a one or more character numeric string.

nnn/nnn Speed/Altitude entry

nnn Altitude entry
nnn/ Speed entry

/nnn Altitude entry
R/nnn Turn radius entry

To delete the manually assigned speed and altitude entries
at a waypoint use the LSKs to direct the DELETE text
from the scratch pad to the chosen waypoint. Entering "R/"
at a particular waypoint removes a manually entered turn
radius.

Note that constraints may not be assigned to holding
pattern waypoints.

GLOBAL REFERENCES:

VARIABLES
ERCODE* INDAT MODCNT

ARRAYS
ENTRY

RECORD ARRAYS
WPT_ MOD

FUNCTIONS AND SUBROUTINES
ALTX DEL IN FLTVAL KILL CON LIBSMATCHC NEW CON

-176-

MODULE NAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

PURPOSE:

PAD_NAME

LEGS.FOR

SLOW

ADD WPT, DIRECT, HLD_IN
NAME = PAD NAME()

To append blanks to the entered waypoint name.

DESCRIPTION:

PAD NAME returns a five character ASCII string which is
set to the name in the CDU entry line padded with blanks
on the end. If the initial data is longer than five

GLOBAL REFERENCES:

YVARIABLES
ECHARS

ARRAYS
ENTRY

-177-

MODULE NAME: PROG_NUM
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL PROG_NUM

PURPOSE:
To echo altitude and speed values to the CDU scratch pad.

DESCRIPTION:

This procedure is called when the LSK adjacent to a way-
point’s altitude and speed values is pressed. The values
are echoed to the scratch pad as if manually entered, which
allows their use elsewhere. PROG NUM calls FMTOUT to
perform the actual scratch pad update after the ASCII data
is encoded from the waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR MODCNT PAGE

ARRAYS
ENTRY

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUT ISTRNG

-178-

MODULE NAME: SET_PG

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: LEGS, LEG_TIME
CALLING SEQUENCE: CALL SET PG (FROM FLAG)
PURPOSE:

To set LEGS page parameters.

DESCRIPTION:

The waypoint buffer index of the waypoint shown on the
first position of LEGS page #1 is set. The decision depends
on the current CDU clearance mode and the "From" variation
status. The chart below shows the chosen index.

CLEARANCE MODE VALUE (regular) VALUE ("From")
Active "To" wpt "From" wpt
Modified 2 1
Original 1 1

The number of pages required to show all the waypoints
is also computed by SET PG.

GLOBAL REFERENCES:

VARIABLES
FIRST PTR LASTPG* MODCNT PMODE TOWPT

-179-

MODULE NAME: SPLIT

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: ADD WPT, HLD IN, KILL WPT

CALLING SEQUENCE: CALL SPLIT (INDEX, IN,QUT,OFFSET, STEP, FLG)
PURPOSE:

To break a route function into two pieces.

DESCRIPTION:

This procedure is called when operations are performed
on waypoints within route functions defined in the route
buffer. The existing route function must be split into two
pieces at the selected waypoint.

The call list to SPLIT consists of six input parameters.
The first is the index into the route buffer of the selected
route function. The memory offsets to the entry and exit
waypoint pointers are next. The fourth parameter is the
memory offset to the "split" waypoint. The number of bytes
between consecutive route function waypoints is provided
through the fifth parameter. Note that the waypoint step
value may be negative. The last parameter is a boolean
variable used to request the deletion of the "split" way-
point.

A route function is made out of the first piece of the
"split" by inserting a copy of the original route function
in the previous route buffer slot. The exit waypoint of the
new pieces is set to the waypoint one step behind the
"split" waypoint. If the new route function has the same
entry and exit points the copy is not created since the
already defined entry waypoint is sufficient for the first
piece of the split. :

If the "split" waypoint is removed, a route discontinuity
replaces the waypoint. In either case a new position in the
route buffer is opened to hold the entry waypoint for the
second part of the "split" route function. When the second
part will contain only one waypoint the new entry waypoint
is all that is needed. 1In this case the original route
function is removed from the route buffer. The module
NEW_ENTRY is called to set-up the second piece.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
BREAK GET_LONG NEW_ENTRY OPEN

-180-

MODULE NAME: STEPS
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: DSP WPTS

CALLING SEQUENCE: CALL STEPS

PURPOSE:
To create CDU display labels for the LEGS page.

DESCRIPTION:

This procedure updates CDU display lines #11 and #12
for the Plan mode LEGS page. Line #11 is completely
dashed. The "step up"/ "step down" prompts are placed
on line #12.

GLOBAL REFERENCES:

ARRAYS
DASHES

FUNCTIONS AND SUBROUTINES
FMTOUT

-181-

MODULE NAME: WPNAME

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: LEGS, LEG _TIME
CALLING SEQUENCE: CALL WPNAME
PURPOSE:

To echo a waypoint name to the scratch pad line.

DESCRIPTION:

This procedure performs the scratch pad programmimg of
selected waypoint names. When one of the waypoints shown
on the LEGS or LEGS-TIME pages is selected by pressing the
adjacent line select key (LSK), this subroutine is called
to enter the waypoint name into the CDU scratch pad for
use as an entry elsewhere.

Error messages are signaled when a line with a route
discontinuity or not containg a waypoint is selected.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR MODCNT PAGE

ARRAYS
ENTRY

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
FMTOUT

-182-

MODULE NAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

PURPOSE:

WPT ADDR

LEGS .FOR

SLOW

ADD PLAN, ADD WPT, HLD_IN, KILL_CON,
KILL WPT, LINK PD, NEW _CON, TRIM WPTS
ADDRESS = WPT ADDR(WPT_NAME) -

To initiate a database search for a waypoint.

DESCRIPTION:

This procedure is called with the name of a waypoint
from the waypoint buffer. The waypoint must not be a

HOLD waypoint.

The actual search is performed by calling

the procedure WPT_ID.

GLOBAL REFERENCES:

VARIABLES

ERCODE* STRING*

ARRAYS
ENTRY *

FUNCTIONS AND SUBROUTINES

RET WPT_ID

-183-

MODULE NAME: WPT_ DATA
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL WPT_DATA (PAGE ID, FROM_FLG)

PURPOSE:
To parse CDU data entries for the LEGS page.

DESCRIPTION:

This procedure is called when a data entry is detected
while on the LEGS page. There are two input parameters to
the module. The first is an index indicating which version
of the LEGS page is active (Standard, Hold, Dir/Intc). The
second parameter signals when the "From Waypoint" format is
being used. The following list describes the different wvalid
data entries.

A request to transfer to the ROUTE INDEX page. The data
on the scratch pad was not intended for the LEGS page so
it is reprogrammed back into the scratch pad for use by
the ROUTE INDEX page. (Standard format only)

Create a provisional holding pattern by calling HLD IN.
(Hold format only).

Generate a "direct to" leg by calling DIRECT. (DIR/INTC
format only).

Generate a "bearing intercept" leg by calling INTERCEPT
or DIRECT depending on status of entries. (DIR/INTC
format only).
Parse constraint entries by calling NMBRS.
Delete flight plan waypoint by calling KILL WPT.
Insert flight plan waypoint by calling ADD WPT.
After any flight plan modifications which did not set an
error condition, the module DEMODE is called to generate
the new "MOD" waypoint buffer.
GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR INTCF* PAGE PGRQST*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
ADD WPT DEL_IN DEMODE DIRECT HLD IN INTERCEPT KILL WPT
NMBRS REPROG

-185-

Section 6.3.5 THE LEGS TIME PAGE

This page is used to select the Reference Time of
Arrival (RTA) waypoint. The page is accessed through
the ROUTE INDEX page. The flight plan waypoints appear
on the left side of the display pages followed by the
defined ground speed constraint and the assigned arrival
time. When a RTA waypoint has not been selected the
arrival time fields contain dashes. To designate a RTA
waypoint a time is keyed on the scratch pad line and
entered at the desired waypoint with one of the LSKs on
the right hand side of the CDU display. The format for
the time entry is "HHMM.SS". The ".SS" field is optional.
The line containing the RTA waypoint has the "RTA" symbol
placed on its line.

Note that the current time of day is always displayed
on the bottom of the page for reference. Refer to figure
6.7 for the format of the LEGS TIME page.

The remainder of this section provides the descriptions
of the four LEGS TIME modules which reside on the file
LEG_TIME.FOR.

PRECEDI*3 PAGE BLANK NOT FILMED
A0S/ &/ INTENTIONALLY BLANK 3 PAG

-187-

ACT RTE LEGS TIME 171

WFBBB 190 1102
WFBBC rso RTA 1105;
WFBBD 150 1105:

150 1107

GMT
<INDEX

The Legs Time Page

(figure 6.7)

PAECENRG 200 o ai® Moy 1 HUMED
RAGE [3 (> INTENTIONALLY BLAMK

-189-

MODULE NAME: DSP_TIME

FILE NAME: LEG_TIME.FOR
PROCESS: SLOW

CALLED BY: LEG TIME
CALLING SEQUENCE: CALL DSP_TIME
PURPOSE:

To create data for the LEGS TIME CDU sCreen.

DESCRIPTION:

This subroutine causes the CDU display to show data
pertinent to the LEGS TIME format. The screen is com-
pletely refreshed every six calls to this module. On the
first call of the cycle the title line and prompt text are
output. On calls #2 through #6 the five lines that show
waypoint information are updated.

Data for the following items is created on the first
call of the cycle. The data is moved to the CDU display
buffer via calls to FMTOUT.

Call TITLE to generate the title line.

Encode the current time of day by calling FMTTIM.
Place the "<INDEX" prompt to the left of line #12.
When a modified flight plan exists place the "ERASE>"
prompt on the right of line #12.

The module SET_PG defines which waypoint will appear at the
top of page #1. The remaining flight plan waypoints are
placed sequentially on display lines, five per page. Enough
LEGS TIME pages are maintained to account for all the way-
points. The following three items may be placed on the
waypoint lines of the display page.

. A blank line for slots past the last defined waypoint.
A "RTE DSC" symbol in reverse video for route discon-
tinuities found in the waypoint buffer.
The waypoint name, ground speed constraint, and assigned
arrival time.

GLOBAL REFERENCES:

VARIABLES
FIRST_PTR LASTPG MODCNT PAGE PASS* PMODE RTA INDX TIME

ARRAYS
DASHES

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
FMTOUT FMTTIM FSTRNG TITLE

i P N o7 FILMED
J._”‘, CNTENTIONALLY BLANK PREC

-190-

MODULE NAME: ECHO_TIME
FILE NAME: LEG_TIME.FOR
PROCESS: SLOW

CALLED BY: LEG_TIME
CALLING SEQUENCE: CALL ECHO_TIME
PURPOSE:

To echo selected arrival times to the CDU scratch pad.

DESCRIPTION:

This procedure is called when the arrival time at a
particular waypoint is selected for insertion into the
scratch pad line. The time value is encoded in place as
if manually enter from the keyboard. An error code is
signaled when the LSK adjacent to a route discontinuity
is selected.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR MODCNT PAGE RTA_WPT

ARRAYS
ENTRY

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUT FMTTIM

-191-

MODULE NAME: LEG_TIME

FILE NAME: LEG_TIME.FOR
PROCESS: SLOW

CALLED BY: CDUEXC
CALLING SEQUENCE: CALL LEG TIME
PURPOSE:

To serve as the LEGS TIME page executive.

DESCRIPTION:

This procedure is the main routine for the LEGS TIME page
of the CDU. When CDU keyboard entries are made either an
inline action is made or the appropriate handler is called.
After checking inputs the CDU screen refresh module is
called.

The first time LEG_TIME is called, upon transfer from a
different CDU page format, some initialization occurs. The
LEGS TIME subpage is set to one, unless transfering from
the LEGS page. The same subpage is used as was on the LEGS
page to provide agreement between the waypoints seen when
transfering between the pages.

Page and subpage change requests are handled inline by
LEG_TIME. Other entries are handled by special procedures.
The following list describes the types of entries and the
called procedure.

Reject modified flight plan. REJECT

Echo waypoint name to scratch pad. WPNAME

Echo arrival time to the scratch pad. ECHO TIME
Decode and process arrival time entries. TTME_IN

GLOBAL REFERENCES:

VARIABLES
ERCODE* LASTPG PAGE* PASS* PGINIT* PGRQST* PMODE

ARRAYS
ENTRY* OLDPAGE

FUNCTIONS AND SUBROUTINES
DSP_TIME ECHO_TIME REJECT SET_PG TIME IN WPNAME

-192-

MODULE NAME: TIME IN

FILE NAME: LEG_TIME.FOR
PROCESS: SLOW

CALLED BY: LEG_TIME
CALLING SEQUENCE: CALL TIME_ IN
PURPOSE:

To decode and process arrival time entries.

DESCRIPTION:

This procedure handles data entries on the LEGS TIME
page of the CDU. The normal data entry consists of an
arrival time entered at a waypoint using one of the upper
five LSKs on the right hand side of the display screen.
"DELETE"” may also be entered adjacent to the RTA waypoint
to remove all arrival times from the flight plan. The
only other valid data entries are actually function entries
that were made when data happened to be on the scratch pad
line (the two page change commands). When this occurs the
data is reprogrammed to the scratch pad for use by sub-
sequent CDU pages.

Note that when an entered time is more than a half day
earlier than the current time of day, the entered value
is assumed to fall into the following day.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR LASTPG* MODCNT PAGE PGRQST* RTA_INDX*
RTA TM* RTA WPT* TIME

ARRAYS
ENTRY

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
DEL_IN DEMODE REPROG TIMVAL

-193-

Section 6.3.6 THE ROUTE PAGE

The ROUTE page is used for the creation and modifi-
cation of aircraft flight plans. Aan origin and destination
airfield must be chosen before any flight plan information
is entered. Page #1 of the ROUTE page is used to choose
airfields. The takeoff runway and company route may option-
ally be selected on page #1 also. The remainder of page #1
and all following pages contain the route function and
waypoint names comprising the flight plan. The various
route elements may be entered and deleted from